new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

Doracamom: Joint 3D Detection and Occupancy Prediction with Multi-view 4D Radars and Cameras for Omnidirectional Perception

3D object detection and occupancy prediction are critical tasks in autonomous driving, attracting significant attention. Despite the potential of recent vision-based methods, they encounter challenges under adverse conditions. Thus, integrating cameras with next-generation 4D imaging radar to achieve unified multi-task perception is highly significant, though research in this domain remains limited. In this paper, we propose Doracamom, the first framework that fuses multi-view cameras and 4D radar for joint 3D object detection and semantic occupancy prediction, enabling comprehensive environmental perception. Specifically, we introduce a novel Coarse Voxel Queries Generator that integrates geometric priors from 4D radar with semantic features from images to initialize voxel queries, establishing a robust foundation for subsequent Transformer-based refinement. To leverage temporal information, we design a Dual-Branch Temporal Encoder that processes multi-modal temporal features in parallel across BEV and voxel spaces, enabling comprehensive spatio-temporal representation learning. Furthermore, we propose a Cross-Modal BEV-Voxel Fusion module that adaptively fuses complementary features through attention mechanisms while employing auxiliary tasks to enhance feature quality. Extensive experiments on the OmniHD-Scenes, View-of-Delft (VoD), and TJ4DRadSet datasets demonstrate that Doracamom achieves state-of-the-art performance in both tasks, establishing new benchmarks for multi-modal 3D perception. Code and models will be publicly available.

  • 11 authors
·
Jan 25

One Flight Over the Gap: A Survey from Perspective to Panoramic Vision

Driven by the demand for spatial intelligence and holistic scene perception, omnidirectional images (ODIs), which provide a complete 360 field of view, are receiving growing attention across diverse applications such as virtual reality, autonomous driving, and embodied robotics. Despite their unique characteristics, ODIs exhibit remarkable differences from perspective images in geometric projection, spatial distribution, and boundary continuity, making it challenging for direct domain adaption from perspective methods. This survey reviews recent panoramic vision techniques with a particular emphasis on the perspective-to-panorama adaptation. We first revisit the panoramic imaging pipeline and projection methods to build the prior knowledge required for analyzing the structural disparities. Then, we summarize three challenges of domain adaptation: severe geometric distortions near the poles, non-uniform sampling in Equirectangular Projection (ERP), and periodic boundary continuity. Building on this, we cover 20+ representative tasks drawn from more than 300 research papers in two dimensions. On one hand, we present a cross-method analysis of representative strategies for addressing panoramic specific challenges across different tasks. On the other hand, we conduct a cross-task comparison and classify panoramic vision into four major categories: visual quality enhancement and assessment, visual understanding, multimodal understanding, and visual generation. In addition, we discuss open challenges and future directions in data, models, and applications that will drive the advancement of panoramic vision research. We hope that our work can provide new insight and forward looking perspectives to advance the development of panoramic vision technologies. Our project page is https://insta360-research-team.github.io/Survey-of-Panorama

  • 11 authors
·
Sep 4

OmniZoomer: Learning to Move and Zoom in on Sphere at High-Resolution

Omnidirectional images (ODIs) have become increasingly popular, as their large field-of-view (FoV) can offer viewers the chance to freely choose the view directions in immersive environments such as virtual reality. The M\"obius transformation is typically employed to further provide the opportunity for movement and zoom on ODIs, but applying it to the image level often results in blurry effect and aliasing problem. In this paper, we propose a novel deep learning-based approach, called OmniZoomer, to incorporate the M\"obius transformation into the network for movement and zoom on ODIs. By learning various transformed feature maps under different conditions, the network is enhanced to handle the increasing edge curvatures, which alleviates the blurry effect. Moreover, to address the aliasing problem, we propose two key components. Firstly, to compensate for the lack of pixels for describing curves, we enhance the feature maps in the high-resolution (HR) space and calculate the transformed index map with a spatial index generation module. Secondly, considering that ODIs are inherently represented in the spherical space, we propose a spherical resampling module that combines the index map and HR feature maps to transform the feature maps for better spherical correlation. The transformed feature maps are decoded to output a zoomed ODI. Experiments show that our method can produce HR and high-quality ODIs with the flexibility to move and zoom in to the object of interest. Project page is available at http://vlislab22.github.io/OmniZoomer/.

  • 6 authors
·
Aug 15, 2023

OmniScene: Attention-Augmented Multimodal 4D Scene Understanding for Autonomous Driving

Human vision is capable of transforming two-dimensional observations into an egocentric three-dimensional scene understanding, which underpins the ability to translate complex scenes and exhibit adaptive behaviors. This capability, however, remains lacking in current autonomous driving systems, where mainstream approaches primarily rely on depth-based 3D reconstruction rather than true scene understanding. To address this limitation, we propose a novel human-like framework called OmniScene. First, we introduce the OmniScene Vision-Language Model (OmniVLM), a vision-language framework that integrates multi-view and temporal perception for holistic 4D scene understanding. Then, harnessing a teacher-student OmniVLM architecture and knowledge distillation, we embed textual representations into 3D instance features for semantic supervision, enriching feature learning, and explicitly capturing human-like attentional semantics. These feature representations are further aligned with human driving behaviors, forming a more human-like perception-understanding-action architecture. In addition, we propose a Hierarchical Fusion Strategy (HFS) to address imbalances in modality contributions during multimodal integration. Our approach adaptively calibrates the relative significance of geometric and semantic features at multiple abstraction levels, enabling the synergistic use of complementary cues from visual and textual modalities. This learnable dynamic fusion enables a more nuanced and effective exploitation of heterogeneous information. We evaluate OmniScene comprehensively on the nuScenes dataset, benchmarking it against over ten state-of-the-art models across various tasks. Our approach consistently achieves superior results, establishing new benchmarks in perception, prediction, planning, and visual question answering.

  • 8 authors
·
Sep 24

OmniDPO: A Preference Optimization Framework to Address Omni-Modal Hallucination

Recently, Omni-modal large language models (OLLMs) have sparked a new wave of research, achieving impressive results in tasks such as audio-video understanding and real-time environment perception. However, hallucination issues still persist. Similar to the bimodal setting, the priors from the text modality tend to dominate, leading OLLMs to rely more heavily on textual cues while neglecting visual and audio information. In addition, fully multimodal scenarios introduce new challenges. Most existing models align visual or auditory modalities with text independently during training, while ignoring the intrinsic correlations between video and its corresponding audio. This oversight results in hallucinations when reasoning requires interpreting hidden audio cues embedded in video content. To address these challenges, we propose OmniDPO, a preference-alignment framework designed to mitigate hallucinations in OLLMs. Specifically, OmniDPO incorporates two strategies: (1) constructing text-preference sample pairs to enhance the model's understanding of audio-video interactions; and (2) constructing multimodal-preference sample pairs to strengthen the model's attention to visual and auditory information. By tackling both challenges, OmniDPO effectively improves multimodal grounding and reduces hallucination. Experiments conducted on two OLLMs demonstrate that OmniDPO not only effectively mitigates multimodal hallucinations but also significantly enhances the models' reasoning capabilities across modalities. All code and datasets will be released upon paper acceptance.

  • 9 authors
·
Aug 31

OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model

Omnidirectional images (ODIs) are commonly used in real-world visual tasks, and high-resolution ODIs help improve the performance of related visual tasks. Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images and a lack of effective out-of-domain generalization capabilities in training methods. Image generation methods represented by diffusion model provide strong priors for visual tasks and have been proven to be effectively applied to image restoration tasks. Leveraging the image priors of the Stable Diffusion (SD) model, we achieve omnidirectional image super-resolution with both fidelity and realness, dubbed as OmniSSR. Firstly, we transform the equirectangular projection (ERP) images into tangent projection (TP) images, whose distribution approximates the planar image domain. Then, we use SD to iteratively sample initial high-resolution results. At each denoising iteration, we further correct and update the initial results using the proposed Octadecaplex Tangent Information Interaction (OTII) and Gradient Decomposition (GD) technique to ensure better consistency. Finally, the TP images are transformed back to obtain the final high-resolution results. Our method is zero-shot, requiring no training or fine-tuning. Experiments of our method on two benchmark datasets demonstrate the effectiveness of our proposed method.

  • 4 authors
·
Apr 16, 2024

OmniFusion: 360 Monocular Depth Estimation via Geometry-Aware Fusion

A well-known challenge in applying deep-learning methods to omnidirectional images is spherical distortion. In dense regression tasks such as depth estimation, where structural details are required, using a vanilla CNN layer on the distorted 360 image results in undesired information loss. In this paper, we propose a 360 monocular depth estimation pipeline, OmniFusion, to tackle the spherical distortion issue. Our pipeline transforms a 360 image into less-distorted perspective patches (i.e. tangent images) to obtain patch-wise predictions via CNN, and then merge the patch-wise results for final output. To handle the discrepancy between patch-wise predictions which is a major issue affecting the merging quality, we propose a new framework with the following key components. First, we propose a geometry-aware feature fusion mechanism that combines 3D geometric features with 2D image features to compensate for the patch-wise discrepancy. Second, we employ the self-attention-based transformer architecture to conduct a global aggregation of patch-wise information, which further improves the consistency. Last, we introduce an iterative depth refinement mechanism, to further refine the estimated depth based on the more accurate geometric features. Experiments show that our method greatly mitigates the distortion issue, and achieves state-of-the-art performances on several 360 monocular depth estimation benchmark datasets.

  • 6 authors
·
Mar 1, 2022

Omni-Captioner: Data Pipeline, Models, and Benchmark for Omni Detailed Perception

Fine-grained perception of multimodal information is critical for advancing human-AI interaction. With recent progress in audio-visual technologies, Omni Language Models (OLMs), capable of processing audio and video signals in parallel, have emerged as a promising paradigm for achieving richer understanding and reasoning. However, their capacity to capture and describe fine-grained details remains limited explored. In this work, we present a systematic and comprehensive investigation of omni detailed perception from the perspectives of the data pipeline, models, and benchmark. We first identify an inherent "co-growth" between detail and hallucination in current OLMs. To address this, we propose Omni-Detective, an agentic data generation pipeline integrating tool-calling, to autonomously produce highly detailed yet minimally hallucinatory multimodal data. Based on the data generated with Omni-Detective, we train two captioning models: Audio-Captioner for audio-only detailed perception, and Omni-Captioner for audio-visual detailed perception. Under the cascade evaluation protocol, Audio-Captioner achieves the best performance on MMAU and MMAR among all open-source models, surpassing Gemini 2.5 Flash and delivering performance comparable to Gemini 2.5 Pro. On existing detailed captioning benchmarks, Omni-Captioner sets a new state-of-the-art on VDC and achieves the best trade-off between detail and hallucination on the video-SALMONN 2 testset. Given the absence of a dedicated benchmark for omni detailed perception, we design Omni-Cloze, a novel cloze-style evaluation for detailed audio, visual, and audio-visual captioning that ensures stable, efficient, and reliable assessment. Experimental results and analysis demonstrate the effectiveness of Omni-Detective in generating high-quality detailed captions, as well as the superiority of Omni-Cloze in evaluating such detailed captions.

  • 12 authors
·
Oct 14

LayerPano3D: Layered 3D Panorama for Hyper-Immersive Scene Generation

3D immersive scene generation is a challenging yet critical task in computer vision and graphics. A desired virtual 3D scene should 1) exhibit omnidirectional view consistency, and 2) allow for free exploration in complex scene hierarchies. Existing methods either rely on successive scene expansion via inpainting or employ panorama representation to represent large FOV scene environments. However, the generated scene suffers from semantic drift during expansion and is unable to handle occlusion among scene hierarchies. To tackle these challenges, we introduce LayerPano3D, a novel framework for full-view, explorable panoramic 3D scene generation from a single text prompt. Our key insight is to decompose a reference 2D panorama into multiple layers at different depth levels, where each layer reveals the unseen space from the reference views via diffusion prior. LayerPano3D comprises multiple dedicated designs: 1) we introduce a novel text-guided anchor view synthesis pipeline for high-quality, consistent panorama generation. 2) We pioneer the Layered 3D Panorama as underlying representation to manage complex scene hierarchies and lift it into 3D Gaussians to splat detailed 360-degree omnidirectional scenes with unconstrained viewing paths. Extensive experiments demonstrate that our framework generates state-of-the-art 3D panoramic scene in both full view consistency and immersive exploratory experience. We believe that LayerPano3D holds promise for advancing 3D panoramic scene creation with numerous applications.

  • 8 authors
·
Aug 23, 2024 2

4K4DGen: Panoramic 4D Generation at 4K Resolution

The blooming of virtual reality and augmented reality (VR/AR) technologies has driven an increasing demand for the creation of high-quality, immersive, and dynamic environments. However, existing generative techniques either focus solely on dynamic objects or perform outpainting from a single perspective image, failing to meet the needs of VR/AR applications. In this work, we tackle the challenging task of elevating a single panorama to an immersive 4D experience. For the first time, we demonstrate the capability to generate omnidirectional dynamic scenes with 360-degree views at 4K resolution, thereby providing an immersive user experience. Our method introduces a pipeline that facilitates natural scene animations and optimizes a set of 4D Gaussians using efficient splatting techniques for real-time exploration. To overcome the lack of scene-scale annotated 4D data and models, especially in panoramic formats, we propose a novel Panoramic Denoiser that adapts generic 2D diffusion priors to animate consistently in 360-degree images, transforming them into panoramic videos with dynamic scenes at targeted regions. Subsequently, we elevate the panoramic video into a 4D immersive environment while preserving spatial and temporal consistency. By transferring prior knowledge from 2D models in the perspective domain to the panoramic domain and the 4D lifting with spatial appearance and geometry regularization, we achieve high-quality Panorama-to-4D generation at a resolution of (4096 times 2048) for the first time. See the project website at https://4k4dgen.github.io.

  • 10 authors
·
Jun 19, 2024 1

OmniPlay: Benchmarking Omni-Modal Models on Omni-Modal Game Playing

While generalist foundation models like Gemini and GPT-4o demonstrate impressive multi-modal competence, existing evaluations fail to test their intelligence in dynamic, interactive worlds. Static benchmarks lack agency, while interactive benchmarks suffer from a severe modal bottleneck, typically ignoring crucial auditory and temporal cues. To bridge this evaluation chasm, we introduce OmniPlay, a diagnostic benchmark designed not just to evaluate, but to probe the fusion and reasoning capabilities of agentic models across the full sensory spectrum. Built on a core philosophy of modality interdependence, OmniPlay comprises a suite of five game environments that systematically create scenarios of both synergy and conflict, forcing agents to perform genuine cross-modal reasoning. Our comprehensive evaluation of six leading omni-modal models reveals a critical dichotomy: they exhibit superhuman performance on high-fidelity memory tasks but suffer from systemic failures in challenges requiring robust reasoning and strategic planning. We demonstrate that this fragility stems from brittle fusion mechanisms, which lead to catastrophic performance degradation under modality conflict and uncover a counter-intuitive "less is more" paradox, where removing sensory information can paradoxically improve performance. Our findings suggest that the path toward robust AGI requires a research focus beyond scaling to explicitly address synergistic fusion. Our platform is available for anonymous review at https://github.com/fuqingbie/omni-game-benchmark.

  • 9 authors
·
Aug 6

OmniHD-Scenes: A Next-Generation Multimodal Dataset for Autonomous Driving

The rapid advancement of deep learning has intensified the need for comprehensive data for use by autonomous driving algorithms. High-quality datasets are crucial for the development of effective data-driven autonomous driving solutions. Next-generation autonomous driving datasets must be multimodal, incorporating data from advanced sensors that feature extensive data coverage, detailed annotations, and diverse scene representation. To address this need, we present OmniHD-Scenes, a large-scale multimodal dataset that provides comprehensive omnidirectional high-definition data. The OmniHD-Scenes dataset combines data from 128-beam LiDAR, six cameras, and six 4D imaging radar systems to achieve full environmental perception. The dataset comprises 1501 clips, each approximately 30-s long, totaling more than 450K synchronized frames and more than 5.85 million synchronized sensor data points. We also propose a novel 4D annotation pipeline. To date, we have annotated 200 clips with more than 514K precise 3D bounding boxes. These clips also include semantic segmentation annotations for static scene elements. Additionally, we introduce a novel automated pipeline for generation of the dense occupancy ground truth, which effectively leverages information from non-key frames. Alongside the proposed dataset, we establish comprehensive evaluation metrics, baseline models, and benchmarks for 3D detection and semantic occupancy prediction. These benchmarks utilize surround-view cameras and 4D imaging radar to explore cost-effective sensor solutions for autonomous driving applications. Extensive experiments demonstrate the effectiveness of our low-cost sensor configuration and its robustness under adverse conditions. Data will be released at https://www.2077ai.com/OmniHD-Scenes.

  • 13 authors
·
Dec 14, 2024

Latent Compass: Creation by Navigation

In Marius von Senden's Space and Sight, a newly sighted blind patient describes the experience of a corner as lemon-like, because corners "prick" sight like lemons prick the tongue. Prickliness, here, is a dimension in the feature space of sensory experience, an effect of the perceived on the perceiver that arises where the two interact. In the account of the newly sighted, an effect familiar from one interaction translates to a novel context. Perception serves as the vehicle for generalization, in that an effect shared across different experiences produces a concrete abstraction grounded in those experiences. Cezanne and the post-impressionists, fluent in the language of experience translation, realized that the way to paint a concrete form that best reflected reality was to paint not what they saw, but what it was like to see. We envision a future of creation using AI where what it is like to see is replicable, transferrable, manipulable - part of the artist's palette that is both grounded in a particular context, and generalizable beyond it. An active line of research maps human-interpretable features onto directions in GAN latent space. Supervised and self-supervised approaches that search for anticipated directions or use off-the-shelf classifiers to drive image manipulation in embedding space are limited in the variety of features they can uncover. Unsupervised approaches that discover useful new directions show that the space of perceptually meaningful directions is nowhere close to being fully mapped. As this space is broad and full of creative potential, we want tools for direction discovery that capture the richness and generalizability of human perception. Our approach puts creators in the discovery loop during real-time tool use, in order to identify directions that are perceptually meaningful to them, and generate interpretable image translations along those directions.

  • 3 authors
·
Dec 19, 2020

Omnidirectional Multi-Object Tracking

Panoramic imagery, with its 360{\deg} field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in panoramic field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as panoramic fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The established dataset and source code are available at https://github.com/xifen523/OmniTrack.

  • 9 authors
·
Mar 6

Perceptual Scales Predicted by Fisher Information Metrics

Perception is often viewed as a process that transforms physical variables, external to an observer, into internal psychological variables. Such a process can be modeled by a function coined perceptual scale. The perceptual scale can be deduced from psychophysical measurements that consist in comparing the relative differences between stimuli (i.e. difference scaling experiments). However, this approach is often overlooked by the modeling and experimentation communities. Here, we demonstrate the value of measuring the perceptual scale of classical (spatial frequency, orientation) and less classical physical variables (interpolation between textures) by embedding it in recent probabilistic modeling of perception. First, we show that the assumption that an observer has an internal representation of univariate parameters such as spatial frequency or orientation while stimuli are high-dimensional does not lead to contradictory predictions when following the theoretical framework. Second, we show that the measured perceptual scale corresponds to the transduction function hypothesized in this framework. In particular, we demonstrate that it is related to the Fisher information of the generative model that underlies perception and we test the predictions given by the generative model of different stimuli in a set a of difference scaling experiments. Our main conclusion is that the perceptual scale is mostly driven by the stimulus power spectrum. Finally, we propose that this measure of perceptual scale is a way to push further the notion of perceptual distances by estimating the perceptual geometry of images i.e. the path between images instead of simply the distance between those.

  • 2 authors
·
Oct 18, 2023

Vision-Only Robot Navigation in a Neural Radiance World

Neural Radiance Fields (NeRFs) have recently emerged as a powerful paradigm for the representation of natural, complex 3D scenes. NeRFs represent continuous volumetric density and RGB values in a neural network, and generate photo-realistic images from unseen camera viewpoints through ray tracing. We propose an algorithm for navigating a robot through a 3D environment represented as a NeRF using only an on-board RGB camera for localization. We assume the NeRF for the scene has been pre-trained offline, and the robot's objective is to navigate through unoccupied space in the NeRF to reach a goal pose. We introduce a trajectory optimization algorithm that avoids collisions with high-density regions in the NeRF based on a discrete time version of differential flatness that is amenable to constraining the robot's full pose and control inputs. We also introduce an optimization based filtering method to estimate 6DoF pose and velocities for the robot in the NeRF given only an onboard RGB camera. We combine the trajectory planner with the pose filter in an online replanning loop to give a vision-based robot navigation pipeline. We present simulation results with a quadrotor robot navigating through a jungle gym environment, the inside of a church, and Stonehenge using only an RGB camera. We also demonstrate an omnidirectional ground robot navigating through the church, requiring it to reorient to fit through the narrow gap. Videos of this work can be found at https://mikh3x4.github.io/nerf-navigation/ .

  • 7 authors
·
Sep 30, 2021

Machine Learning Modeling for Multi-order Human Visual Motion Processing

Our research aims to develop machines that learn to perceive visual motion as do humans. While recent advances in computer vision (CV) have enabled DNN-based models to accurately estimate optical flow in naturalistic images, a significant disparity remains between CV models and the biological visual system in both architecture and behavior. This disparity includes humans' ability to perceive the motion of higher-order image features (second-order motion), which many CV models fail to capture because of their reliance on the intensity conservation law. Our model architecture mimics the cortical V1-MT motion processing pathway, utilizing a trainable motion energy sensor bank and a recurrent graph network. Supervised learning employing diverse naturalistic videos allows the model to replicate psychophysical and physiological findings about first-order (luminance-based) motion perception. For second-order motion, inspired by neuroscientific findings, the model includes an additional sensing pathway with nonlinear preprocessing before motion energy sensing, implemented using a simple multilayer 3D CNN block. When exploring how the brain acquired the ability to perceive second-order motion in natural environments, in which pure second-order signals are rare, we hypothesized that second-order mechanisms were critical when estimating robust object motion amidst optical fluctuations, such as highlights on glossy surfaces. We trained our dual-pathway model on novel motion datasets with varying material properties of moving objects. We found that training to estimate object motion from non-Lambertian materials naturally endowed the model with the capacity to perceive second-order motion, as can humans. The resulting model effectively aligns with biological systems while generalizing to both first- and second-order motion phenomena in natural scenes.

  • 5 authors
·
Jan 22

NExT-OMNI: Towards Any-to-Any Omnimodal Foundation Models with Discrete Flow Matching

Next-generation multimodal foundation models capable of any-to-any cross-modal generation and multi-turn interaction will serve as core components of artificial general intelligence systems, playing a pivotal role in human-machine interaction. However, most existing multimodal models remain constrained by autoregressive architectures, whose inherent limitations prevent a balanced integration of understanding and generation capabilities. Although hybrid and decoupling strategies have been explored to address these tasks within unified frameworks separately, their redundant, non-integrated designs limit their applicability to broader scenarios, such as cross-modal retrieval. In this work, we introduce NExT-OMNI, an open-source omnimodal foundation model that achieves unified modeling through discrete flow paradigms. By leveraging metric-induced probability paths and kinetic optimal velocities, NExT-OMNI natively supports any-to-any understanding and generation with enhanced response efficiency, while enabling broader application scenarios through concise unified representations rather than task-decoupled designs. Trained on large-scale interleaved text, image, video, and audio data, NExT-OMNI delivers competitive performance on multimodal generation and understanding benchmarks, while outperforming prior unified models in multi-turn multimodal interaction and cross-modal retrieval, highlighting its architectural advantages as a next-generation multimodal foundation model. To advance further research, we release training details, data protocols, and open-source both the code and model checkpoints.

  • 8 authors
·
Oct 15

RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments

Reliable embodied perception from an egocentric perspective is challenging yet essential for autonomous navigation technology of intelligent mobile agents. With the growing demand of social robotics, near-field scene understanding becomes an important research topic in the areas of egocentric perceptual tasks related to navigation in both crowded and unstructured environments. Due to the complexity of environmental conditions and difficulty of surrounding obstacles owing to truncation and occlusion, the perception capability under this circumstance is still inferior. To further enhance the intelligence of mobile robots, in this paper, we setup an egocentric multi-sensor data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye), which supports flexible sensor configurations to enable dynamic sight of view from ego-perspective, capturing either near or farther areas. Meanwhile, a large-scale multimodal dataset is constructed, named RoboSense, to facilitate egocentric robot perception. Specifically, RoboSense contains more than 133K synchronized data with 1.4M 3D bounding box and IDs annotated in the full 360^{circ} view, forming 216K trajectories across 7.6K temporal sequences. It has 270times and 18times as many annotations of surrounding obstacles within near ranges as the previous datasets collected for autonomous driving scenarios such as KITTI and nuScenes. Moreover, we define a novel matching criterion for near-field 3D perception and prediction metrics. Based on RoboSense, we formulate 6 popular tasks to facilitate the future research development, where the detailed analysis as well as benchmarks are also provided accordingly. Data desensitization measures have been conducted for privacy protection.

  • 5 authors
·
Aug 27, 2024

OmniPrism: Learning Disentangled Visual Concept for Image Generation

Creative visual concept generation often draws inspiration from specific concepts in a reference image to produce relevant outcomes. However, existing methods are typically constrained to single-aspect concept generation or are easily disrupted by irrelevant concepts in multi-aspect concept scenarios, leading to concept confusion and hindering creative generation. To address this, we propose OmniPrism, a visual concept disentangling approach for creative image generation. Our method learns disentangled concept representations guided by natural language and trains a diffusion model to incorporate these concepts. We utilize the rich semantic space of a multimodal extractor to achieve concept disentanglement from given images and concept guidance. To disentangle concepts with different semantics, we construct a paired concept disentangled dataset (PCD-200K), where each pair shares the same concept such as content, style, and composition. We learn disentangled concept representations through our contrastive orthogonal disentangled (COD) training pipeline, which are then injected into additional diffusion cross-attention layers for generation. A set of block embeddings is designed to adapt each block's concept domain in the diffusion models. Extensive experiments demonstrate that our method can generate high-quality, concept-disentangled results with high fidelity to text prompts and desired concepts.

  • 7 authors
·
Dec 16, 2024

Open Panoramic Segmentation

Panoramic images, capturing a 360{\deg} field of view (FoV), encompass omnidirectional spatial information crucial for scene understanding. However, it is not only costly to obtain training-sufficient dense-annotated panoramas but also application-restricted when training models in a close-vocabulary setting. To tackle this problem, in this work, we define a new task termed Open Panoramic Segmentation (OPS), where models are trained with FoV-restricted pinhole images in the source domain in an open-vocabulary setting while evaluated with FoV-open panoramic images in the target domain, enabling the zero-shot open panoramic semantic segmentation ability of models. Moreover, we propose a model named OOOPS with a Deformable Adapter Network (DAN), which significantly improves zero-shot panoramic semantic segmentation performance. To further enhance the distortion-aware modeling ability from the pinhole source domain, we propose a novel data augmentation method called Random Equirectangular Projection (RERP) which is specifically designed to address object deformations in advance. Surpassing other state-of-the-art open-vocabulary semantic segmentation approaches, a remarkable performance boost on three panoramic datasets, WildPASS, Stanford2D3D, and Matterport3D, proves the effectiveness of our proposed OOOPS model with RERP on the OPS task, especially +2.2% on outdoor WildPASS and +2.4% mIoU on indoor Stanford2D3D. The source code is publicly available at https://junweizheng93.github.io/publications/OPS/OPS.html.

  • 8 authors
·
Jul 2, 2024

ENACT: Evaluating Embodied Cognition with World Modeling of Egocentric Interaction

Embodied cognition argues that intelligence arises from sensorimotor interaction rather than passive observation. It raises an intriguing question: do modern vision-language models (VLMs), trained largely in a disembodied manner, exhibit signs of embodied cognition? We introduce ENACT, a benchmark that casts evaluation of embodied cognition as world modeling from egocentric interaction in a visual question answering (VQA) format. Framed as a partially observable Markov decision process (POMDP) whose actions are scene graph changes, ENACT comprises two complementary sequence reordering tasks: forward world modeling (reorder shuffled observations given actions) and inverse world modeling (reorder shuffled actions given observations). While conceptually simple, solving these tasks implicitly demands capabilities central to embodied cognition-affordance recognition, action-effect reasoning, embodied awareness, and interactive, long-horizon memory from partially observable egocentric input, while avoiding low-level image synthesis that could confound the evaluation. We provide a scalable pipeline that synthesizes QA pairs from robotics simulation (BEHAVIOR) and evaluates models on 8,972 QA pairs spanning long-horizon home-scale activities. Experiments reveal a performance gap between frontier VLMs and humans that widens with interaction horizon. Models consistently perform better on the inverse task than the forward one and exhibit anthropocentric biases, including a preference for right-handed actions and degradation when camera intrinsics or viewpoints deviate from human vision. Website at https://enact-embodied-cognition.github.io/.

  • 11 authors
·
Nov 25 2

OmnixR: Evaluating Omni-modality Language Models on Reasoning across Modalities

We introduce OmnixR, an evaluation suite designed to benchmark SoTA Omni-modality Language Models, such as GPT-4o and Gemini. Evaluating OLMs, which integrate multiple modalities such as text, vision, and audio, presents unique challenges. Particularly, the user message might often consist of multiple modalities, such that OLMs have to establish holistic understanding and reasoning across modalities to accomplish the task. Existing benchmarks are limited to single modality or dual-modality tasks, overlooking comprehensive multi-modal assessments of model reasoning. To address this, OmnixR offers two evaluation variants: (1)synthetic subset: a synthetic dataset generated automatically by translating text into multiple modalities--audio, images, video, and hybrids (Omnify). (2)realistic subset: a real-world dataset, manually curated and annotated by experts, for evaluating cross-modal reasoning in natural settings. OmnixR presents a unique evaluation towards assessing OLMs over a diverse mix of modalities, such as a question that involves video, audio, and text, providing a rigorous cross-modal reasoning testbed unlike any existing benchmarks. Our experiments find that all state-of-the-art OLMs struggle with OmnixR questions that require integrating information from multiple modalities to answer. Further analysis highlights differences in reasoning behavior, underscoring the challenges of omni-modal AI alignment.

  • 11 authors
·
Oct 16, 2024

OmniVGGT: Omni-Modality Driven Visual Geometry Grounded

General 3D foundation models have started to lead the trend of unifying diverse vision tasks, yet most assume RGB-only inputs and ignore readily available geometric cues (e.g., camera intrinsics, poses, and depth maps). To address this issue, we introduce OmniVGGT, a novel framework that can effectively benefit from an arbitrary number of auxiliary geometric modalities during both training and inference. In our framework, a GeoAdapter is proposed to encode depth and camera intrinsics/extrinsics into a spatial foundation model. It employs zero-initialized convolutions to progressively inject geometric information without disrupting the foundation model's representation space. This design ensures stable optimization with negligible overhead, maintaining inference speed comparable to VGGT even with multiple additional inputs. Additionally, a stochastic multimodal fusion regimen is proposed, which randomly samples modality subsets per instance during training. This enables an arbitrary number of modality inputs during testing and promotes learning robust spatial representations instead of overfitting to auxiliary cues. Comprehensive experiments on monocular/multi-view depth estimation, multi-view stereo, and camera pose estimation demonstrate that OmniVGGT outperforms prior methods with auxiliary inputs and achieves state-of-the-art results even with RGB-only input. To further highlight its practical utility, we integrated OmniVGGT into vision-language-action (VLA) models. The enhanced VLA model by OmniVGGT not only outperforms the vanilla point-cloud-based baseline on mainstream benchmarks, but also effectively leverages accessible auxiliary inputs to achieve consistent gains on robotic tasks.

  • 11 authors
·
Nov 13

Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation

Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.

How Far are VLMs from Visual Spatial Intelligence? A Benchmark-Driven Perspective

Visual Spatial Reasoning (VSR) is a core human cognitive ability and a critical requirement for advancing embodied intelligence and autonomous systems. Despite recent progress in Vision-Language Models (VLMs), achieving human-level VSR remains highly challenging due to the complexity of representing and reasoning over three-dimensional space. In this paper, we present a systematic investigation of VSR in VLMs, encompassing a review of existing methodologies across input modalities, model architectures, training strategies, and reasoning mechanisms. Furthermore, we categorize spatial intelligence into three levels of capability, ie, basic perception, spatial understanding, spatial planning, and curate SIBench, a spatial intelligence benchmark encompassing nearly 20 open-source datasets across 23 task settings. Experiments with state-of-the-art VLMs reveal a pronounced gap between perception and reasoning, as models show competence in basic perceptual tasks but consistently underperform in understanding and planning tasks, particularly in numerical estimation, multi-view reasoning, temporal dynamics, and spatial imagination. These findings underscore the substantial challenges that remain in achieving spatial intelligence, while providing both a systematic roadmap and a comprehensive benchmark to drive future research in the field. The related resources of this study are accessible at https://sibench.github.io/Awesome-Visual-Spatial-Reasoning/.

  • 18 authors
·
Sep 23 2

OmniAudio: Generating Spatial Audio from 360-Degree Video

Traditional video-to-audio generation techniques primarily focus on field-of-view (FoV) video and non-spatial audio, often missing the spatial cues necessary for accurately representing sound sources in 3D environments. To address this limitation, we introduce a novel task, 360V2SA, to generate spatial audio from 360-degree videos, specifically producing First-order Ambisonics (FOA) audio - a standard format for representing 3D spatial audio that captures sound directionality and enables realistic 3D audio reproduction. We first create Sphere360, a novel dataset tailored for this task that is curated from real-world data. We also design an efficient semi-automated pipeline for collecting and cleaning paired video-audio data. To generate spatial audio from 360-degree video, we propose a novel framework OmniAudio, which leverages self-supervised pre-training using both spatial audio data (in FOA format) and large-scale non-spatial data. Furthermore, OmniAudio features a dual-branch framework that utilizes both panoramic and FoV video inputs to capture comprehensive local and global information from 360-degree videos. Experimental results demonstrate that OmniAudio achieves state-of-the-art performance across both objective and subjective metrics on Sphere360. Code and datasets will be released at https://github.com/liuhuadai/OmniAudio. The demo page is available at https://OmniAudio-360V2SA.github.io.

  • 14 authors
·
Apr 21

EgoGen: An Egocentric Synthetic Data Generator

Understanding the world in first-person view is fundamental in Augmented Reality (AR). This immersive perspective brings dramatic visual changes and unique challenges compared to third-person views. Synthetic data has empowered third-person-view vision models, but its application to embodied egocentric perception tasks remains largely unexplored. A critical challenge lies in simulating natural human movements and behaviors that effectively steer the embodied cameras to capture a faithful egocentric representation of the 3D world. To address this challenge, we introduce EgoGen, a new synthetic data generator that can produce accurate and rich ground-truth training data for egocentric perception tasks. At the heart of EgoGen is a novel human motion synthesis model that directly leverages egocentric visual inputs of a virtual human to sense the 3D environment. Combined with collision-avoiding motion primitives and a two-stage reinforcement learning approach, our motion synthesis model offers a closed-loop solution where the embodied perception and movement of the virtual human are seamlessly coupled. Compared to previous works, our model eliminates the need for a pre-defined global path, and is directly applicable to dynamic environments. Combined with our easy-to-use and scalable data generation pipeline, we demonstrate EgoGen's efficacy in three tasks: mapping and localization for head-mounted cameras, egocentric camera tracking, and human mesh recovery from egocentric views. EgoGen will be fully open-sourced, offering a practical solution for creating realistic egocentric training data and aiming to serve as a useful tool for egocentric computer vision research. Refer to our project page: https://ego-gen.github.io/.

  • 8 authors
·
Jan 16, 2024

EgoMe: Follow Me via Egocentric View in Real World

When interacting with the real world, human often take the egocentric (first-person) view as a benchmark, naturally transferring behaviors observed from a exocentric (third-person) view to their own. This cognitive theory provides a foundation for researching how robots can more effectively imitate human behavior. However, current research either employs multiple cameras with different views focusing on the same individual's behavior simultaneously or encounters unpair ego-exo view scenarios, there is no effort to fully exploit human cognitive behavior in the real world. To fill this gap, in this paper, we introduce a novel large-scale egocentric dataset, called EgoMe, which towards following the process of human imitation learning via egocentric view in the real world. Our dataset includes 7902 pairs of videos (15804 videos) for diverse daily behaviors in real-world scenarios. For a pair of videos, one video captures a exocentric view of the imitator observing the demonstrator's actions, while the other captures a egocentric view of the imitator subsequently following those actions. Notably, our dataset also contain exo-ego eye gaze, angular velocity, acceleration, magnetic strength and other sensor multi-modal data for assisting in establishing correlations between observing and following process. In addition, we also propose eight challenging benchmark tasks for fully leveraging this data resource and promoting the research of robot imitation learning ability. Extensive statistical analysis demonstrates significant advantages compared to existing datasets. The proposed EgoMe dataset and benchmark will be released soon.

  • 6 authors
·
Jan 31

Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases

Visual search is a ubiquitous and often challenging daily task, exemplified by looking for the car keys at home or a friend in a crowd. An intriguing property of some classical search tasks is an asymmetry such that finding a target A among distractors B can be easier than finding B among A. To elucidate the mechanisms responsible for asymmetry in visual search, we propose a computational model that takes a target and a search image as inputs and produces a sequence of eye movements until the target is found. The model integrates eccentricity-dependent visual recognition with target-dependent top-down cues. We compared the model against human behavior in six paradigmatic search tasks that show asymmetry in humans. Without prior exposure to the stimuli or task-specific training, the model provides a plausible mechanism for search asymmetry. We hypothesized that the polarity of search asymmetry arises from experience with the natural environment. We tested this hypothesis by training the model on augmented versions of ImageNet where the biases of natural images were either removed or reversed. The polarity of search asymmetry disappeared or was altered depending on the training protocol. This study highlights how classical perceptual properties can emerge in neural network models, without the need for task-specific training, but rather as a consequence of the statistical properties of the developmental diet fed to the model. All source code and data are publicly available at https://github.com/kreimanlab/VisualSearchAsymmetry.

  • 5 authors
·
Jun 5, 2021

RCDN: Towards Robust Camera-Insensitivity Collaborative Perception via Dynamic Feature-based 3D Neural Modeling

Collaborative perception is dedicated to tackling the constraints of single-agent perception, such as occlusions, based on the multiple agents' multi-view sensor inputs. However, most existing works assume an ideal condition that all agents' multi-view cameras are continuously available. In reality, cameras may be highly noisy, obscured or even failed during the collaboration. In this work, we introduce a new robust camera-insensitivity problem: how to overcome the issues caused by the failed camera perspectives, while stabilizing high collaborative performance with low calibration cost? To address above problems, we propose RCDN, a Robust Camera-insensitivity collaborative perception with a novel Dynamic feature-based 3D Neural modeling mechanism. The key intuition of RCDN is to construct collaborative neural rendering field representations to recover failed perceptual messages sent by multiple agents. To better model collaborative neural rendering field, RCDN first establishes a geometry BEV feature based time-invariant static field with other agents via fast hash grid modeling. Based on the static background field, the proposed time-varying dynamic field can model corresponding motion vectors for foregrounds with appropriate positions. To validate RCDN, we create OPV2V-N, a new large-scale dataset with manual labelling under different camera failed scenarios. Extensive experiments conducted on OPV2V-N show that RCDN can be ported to other baselines and improve their robustness in extreme camera-insensitivity settings.

  • 6 authors
·
May 27, 2024

Neural Representations of Dynamic Visual Stimuli

Humans experience the world through constantly changing visual stimuli, where scenes can shift and move, change in appearance, and vary in distance. The dynamic nature of visual perception is a fundamental aspect of our daily lives, yet the large majority of research on object and scene processing, particularly using fMRI, has focused on static stimuli. While studies of static image perception are attractive due to their computational simplicity, they impose a strong non-naturalistic constraint on our investigation of human vision. In contrast, dynamic visual stimuli offer a more ecologically-valid approach but present new challenges due to the interplay between spatial and temporal information, making it difficult to disentangle the representations of stable image features and motion. To overcome this limitation -- given dynamic inputs, we explicitly decouple the modeling of static image representations and motion representations in the human brain. Three results demonstrate the feasibility of this approach. First, we show that visual motion information as optical flow can be predicted (or decoded) from brain activity as measured by fMRI. Second, we show that this predicted motion can be used to realistically animate static images using a motion-conditioned video diffusion model (where the motion is driven by fMRI brain activity). Third, we show prediction in the reverse direction: existing video encoders can be fine-tuned to predict fMRI brain activity from video imagery, and can do so more effectively than image encoders. This foundational work offers a novel, extensible framework for interpreting how the human brain processes dynamic visual information.

  • 6 authors
·
Jun 4, 2024

Self-Supervised Learning of Depth and Camera Motion from 360° Videos

As 360{\deg} cameras become prevalent in many autonomous systems (e.g., self-driving cars and drones), efficient 360{\deg} perception becomes more and more important. We propose a novel self-supervised learning approach for predicting the omnidirectional depth and camera motion from a 360{\deg} video. In particular, starting from the SfMLearner, which is designed for cameras with normal field-of-view, we introduce three key features to process 360{\deg} images efficiently. Firstly, we convert each image from equirectangular projection to cubic projection in order to avoid image distortion. In each network layer, we use Cube Padding (CP), which pads intermediate features from adjacent faces, to avoid image boundaries. Secondly, we propose a novel "spherical" photometric consistency constraint on the whole viewing sphere. In this way, no pixel will be projected outside the image boundary which typically happens in images with normal field-of-view. Finally, rather than naively estimating six independent camera motions (i.e., naively applying SfM-Learner to each face on a cube), we propose a novel camera pose consistency loss to ensure the estimated camera motions reaching consensus. To train and evaluate our approach, we collect a new PanoSUNCG dataset containing a large amount of 360{\deg} videos with groundtruth depth and camera motion. Our approach achieves state-of-the-art depth prediction and camera motion estimation on PanoSUNCG with faster inference speed comparing to equirectangular. In real-world indoor videos, our approach can also achieve qualitatively reasonable depth prediction by acquiring model pre-trained on PanoSUNCG.

  • 8 authors
·
Nov 13, 2018

OmniWorld: A Multi-Domain and Multi-Modal Dataset for 4D World Modeling

The field of 4D world modeling - aiming to jointly capture spatial geometry and temporal dynamics - has witnessed remarkable progress in recent years, driven by advances in large-scale generative models and multimodal learning. However, the development of truly general 4D world models remains fundamentally constrained by the availability of high-quality data. Existing datasets and benchmarks often lack the dynamic complexity, multi-domain diversity, and spatial-temporal annotations required to support key tasks such as 4D geometric reconstruction, future prediction, and camera-control video generation. To address this gap, we introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifically designed for 4D world modeling. OmniWorld consists of a newly collected OmniWorld-Game dataset and several curated public datasets spanning diverse domains. Compared with existing synthetic datasets, OmniWorld-Game provides richer modality coverage, larger scale, and more realistic dynamic interactions. Based on this dataset, we establish a challenging benchmark that exposes the limitations of current state-of-the-art (SOTA) approaches in modeling complex 4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld leads to significant performance gains across 4D reconstruction and video generation tasks, strongly validating OmniWorld as a powerful resource for training and evaluation. We envision OmniWorld as a catalyst for accelerating the development of general-purpose 4D world models, ultimately advancing machines' holistic understanding of the physical world.

Do Vision-Language Models Have Internal World Models? Towards an Atomic Evaluation

Internal world models (WMs) enable agents to understand the world's state and predict transitions, serving as the basis for advanced deliberative reasoning. Recent large Vision-Language Models (VLMs), such as OpenAI o3, GPT-4o and Gemini, exhibit potential as general-purpose WMs. While the latest studies have evaluated and shown limitations in specific capabilities such as visual understanding, a systematic evaluation of VLMs' fundamental WM abilities remains absent. Drawing on comparative psychology and cognitive science, we propose a two-stage framework that assesses Perception (visual, spatial, temporal, quantitative, and motion) and Prediction (mechanistic simulation, transitive inference, compositional inference) to provide an atomic evaluation of VLMs as WMs. Guided by this framework, we introduce WM-ABench, a large-scale benchmark comprising 23 fine-grained evaluation dimensions across 6 diverse simulated environments with controlled counterfactual simulations. Through 660 experiments on 15 latest commercial and open-source VLMs, we find that these models exhibit striking limitations in basic world modeling abilities. For instance, almost all models perform at near-random accuracy when distinguishing motion trajectories. Additionally, they lack disentangled understanding -- e.g., some models tend to believe blue objects move faster than green ones. More rich results and analyses reveal significant gaps between VLMs and human-level world modeling.

OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation

Existing video avatar models can produce fluid human animations, yet they struggle to move beyond mere physical likeness to capture a character's authentic essence. Their motions typically synchronize with low-level cues like audio rhythm, lacking a deeper semantic understanding of emotion, intent, or context. To bridge this gap, we propose a framework designed to generate character animations that are not only physically plausible but also semantically coherent and expressive. Our model, OmniHuman-1.5, is built upon two key technical contributions. First, we leverage Multimodal Large Language Models to synthesize a structured textual representation of conditions that provides high-level semantic guidance. This guidance steers our motion generator beyond simplistic rhythmic synchronization, enabling the production of actions that are contextually and emotionally resonant. Second, to ensure the effective fusion of these multimodal inputs and mitigate inter-modality conflicts, we introduce a specialized Multimodal DiT architecture with a novel Pseudo Last Frame design. The synergy of these components allows our model to accurately interpret the joint semantics of audio, images, and text, thereby generating motions that are deeply coherent with the character, scene, and linguistic content. Extensive experiments demonstrate that our model achieves leading performance across a comprehensive set of metrics, including lip-sync accuracy, video quality, motion naturalness and semantic consistency with textual prompts. Furthermore, our approach shows remarkable extensibility to complex scenarios, such as those involving multi-person and non-human subjects. Homepage: https://omnihuman-lab.github.io/v1_5/

  • 9 authors
·
Aug 26 2

Neural feels with neural fields: Visuo-tactile perception for in-hand manipulation

To achieve human-level dexterity, robots must infer spatial awareness from multimodal sensing to reason over contact interactions. During in-hand manipulation of novel objects, such spatial awareness involves estimating the object's pose and shape. The status quo for in-hand perception primarily employs vision, and restricts to tracking a priori known objects. Moreover, visual occlusion of objects in-hand is imminent during manipulation, preventing current systems to push beyond tasks without occlusion. We combine vision and touch sensing on a multi-fingered hand to estimate an object's pose and shape during in-hand manipulation. Our method, NeuralFeels, encodes object geometry by learning a neural field online and jointly tracks it by optimizing a pose graph problem. We study multimodal in-hand perception in simulation and the real-world, interacting with different objects via a proprioception-driven policy. Our experiments show final reconstruction F-scores of 81% and average pose drifts of 4.7,mm, further reduced to 2.3,mm with known CAD models. Additionally, we observe that under heavy visual occlusion we can achieve up to 94% improvements in tracking compared to vision-only methods. Our results demonstrate that touch, at the very least, refines and, at the very best, disambiguates visual estimates during in-hand manipulation. We release our evaluation dataset of 70 experiments, FeelSight, as a step towards benchmarking in this domain. Our neural representation driven by multimodal sensing can serve as a perception backbone towards advancing robot dexterity. Videos can be found on our project website https://suddhu.github.io/neural-feels/

  • 12 authors
·
Dec 20, 2023 1

Right Side Up? Disentangling Orientation Understanding in MLLMs with Fine-grained Multi-axis Perception Tasks

Object orientation understanding represents a fundamental challenge in visual perception critical for applications like robotic manipulation and augmented reality. Current vision-language benchmarks fail to isolate this capability, often conflating it with positional relationships and general scene understanding. We introduce DORI (Discriminative Orientation Reasoning Intelligence), a comprehensive benchmark establishing object orientation perception as a primary evaluation target. DORI assesses four dimensions of orientation comprehension: frontal alignment, rotational transformations, relative directional relationships, and canonical orientation understanding. Through carefully curated tasks from 11 datasets spanning 67 object categories across synthetic and real-world scenarios, DORI provides insights on how multi-modal systems understand object orientations. Our evaluation of 15 state-of-the-art vision-language models reveals critical limitations: even the best models achieve only 54.2% accuracy on coarse tasks and 33.0% on granular orientation judgments, with performance deteriorating for tasks requiring reference frame shifts or compound rotations. These findings demonstrate the need for dedicated orientation representation mechanisms, as models show systematic inability to perform precise angular estimations, track orientation changes across viewpoints, and understand compound rotations - suggesting limitations in their internal 3D spatial representations. As the first diagnostic framework specifically designed for orientation awareness in multimodal systems, DORI offers implications for improving robotic control, 3D scene reconstruction, and human-AI interaction in physical environments. DORI data: https://huggingface.co/datasets/appledora/DORI-Benchmark

  • 7 authors
·
May 27 2

Transcendental Idealism of Planner: Evaluating Perception from Planning Perspective for Autonomous Driving

Evaluating the performance of perception modules in autonomous driving is one of the most critical tasks in developing the complex intelligent system. While module-level unit test metrics adopted from traditional computer vision tasks are feasible to some extent, it remains far less explored to measure the impact of perceptual noise on the driving quality of autonomous vehicles in a consistent and holistic manner. In this work, we propose a principled framework that provides a coherent and systematic understanding of the impact an error in the perception module imposes on an autonomous agent's planning that actually controls the vehicle. Specifically, the planning process is formulated as expected utility maximisation, where all input signals from upstream modules jointly provide a world state description, and the planner strives for the optimal action by maximising the expected utility determined by both world states and actions. We show that, under practical conditions, the objective function can be represented as an inner product between the world state description and the utility function in a Hilbert space. This geometric interpretation enables a novel way to analyse the impact of noise in world state estimation on planning and leads to a universal metric for evaluating perception. The whole framework resembles the idea of transcendental idealism in the classical philosophical literature, which gives the name to our approach.

  • 2 authors
·
Jun 12, 2023

TopViewRS: Vision-Language Models as Top-View Spatial Reasoners

Top-view perspective denotes a typical way in which humans read and reason over different types of maps, and it is vital for localization and navigation of humans as well as of `non-human' agents, such as the ones backed by large Vision-Language Models (VLMs). Nonetheless, spatial reasoning capabilities of modern VLMs remain unattested and underexplored. In this work, we thus study their capability to understand and reason over spatial relations from the top view. The focus on top view also enables controlled evaluations at different granularity of spatial reasoning; we clearly disentangle different abilities (e.g., recognizing particular objects versus understanding their relative positions). We introduce the TopViewRS (Top-View Reasoning in Space) dataset, consisting of 11,384 multiple-choice questions with either realistic or semantic top-view map as visual input. We then use it to study and evaluate VLMs across 4 perception and reasoning tasks with different levels of complexity. Evaluation of 10 representative open- and closed-source VLMs reveals the gap of more than 50% compared to average human performance, and it is even lower than the random baseline in some cases. Although additional experiments show that Chain-of-Thought reasoning can boost model capabilities by 5.82% on average, the overall performance of VLMs remains limited. Our findings underscore the critical need for enhanced model capability in top-view spatial reasoning and set a foundation for further research towards human-level proficiency of VLMs in real-world multimodal tasks.

  • 6 authors
·
Jun 4, 2024

PanopticNeRF-360: Panoramic 3D-to-2D Label Transfer in Urban Scenes

Training perception systems for self-driving cars requires substantial annotations. However, manual labeling in 2D images is highly labor-intensive. While existing datasets provide rich annotations for pre-recorded sequences, they fall short in labeling rarely encountered viewpoints, potentially hampering the generalization ability for perception models. In this paper, we present PanopticNeRF-360, a novel approach that combines coarse 3D annotations with noisy 2D semantic cues to generate consistent panoptic labels and high-quality images from any viewpoint. Our key insight lies in exploiting the complementarity of 3D and 2D priors to mutually enhance geometry and semantics. Specifically, we propose to leverage noisy semantic and instance labels in both 3D and 2D spaces to guide geometry optimization. Simultaneously, the improved geometry assists in filtering noise present in the 3D and 2D annotations by merging them in 3D space via a learned semantic field. To further enhance appearance, we combine MLP and hash grids to yield hybrid scene features, striking a balance between high-frequency appearance and predominantly contiguous semantics. Our experiments demonstrate PanopticNeRF-360's state-of-the-art performance over existing label transfer methods on the challenging urban scenes of the KITTI-360 dataset. Moreover, PanopticNeRF-360 enables omnidirectional rendering of high-fidelity, multi-view and spatiotemporally consistent appearance, semantic and instance labels. We make our code and data available at https://github.com/fuxiao0719/PanopticNeRF

  • 7 authors
·
Sep 19, 2023

Reasoning Path and Latent State Analysis for Multi-view Visual Spatial Reasoning: A Cognitive Science Perspective

Spatial reasoning is a core aspect of human intelligence that allows perception, inference and planning in 3D environments. However, current vision-language models (VLMs) struggle to maintain geometric coherence and cross-view consistency for spatial reasoning in multi-view settings. We attribute this gap to the lack of fine-grained benchmarks that isolate multi-view reasoning from single-view perception and temporal factors. To address this, we present ReMindView-Bench, a cognitively grounded benchmark for evaluating how VLMs construct, align and maintain spatial mental models across complementary viewpoints. ReMindView-Bench systematically varies viewpoint spatial pattern and query type to probe key factors of spatial cognition. Evaluations of 15 current VLMs reveals consistent failures in cross-view alignment and perspective-taking in multi-view spatial reasoning, motivating deeper analysis on the reasoning process. Explicit phase-wise analysis using LLM-as-a-judge and self-consistency prompting shows that VLMs perform well on in-frame perception but degrade sharply when integrating information across views. Implicit analysis, including linear probing and entropy dynamics, further show progressive loss of task-relevant information and uncertainty separation between correct and incorrect trajectories. These results provide a cognitively grounded diagnosis of VLM spatial reasoning and reveal how multi-view spatial mental models are formed, degraded and destabilized across reasoning phases. The ReMindView-Bench benchmark is available at https://huggingface.co/datasets/Xue0823/ReMindView-Bench, and the source codes of benchmark construction and VLM reasoning analysis are available at https://github.com/pittisl/ReMindView-Bench.

  • 6 authors
·
Dec 1

OmniBench: Towards The Future of Universal Omni-Language Models

Recent advancements in multimodal large language models (MLLMs) have aimed to integrate and interpret data across diverse modalities. However, the capacity of these models to concurrently process and reason about multiple modalities remains inadequately explored, partly due to the lack of comprehensive modality-wise benchmarks. We introduce OmniBench, a novel benchmark designed to rigorously evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define models capable of such tri-modal processing as omni-language models (OLMs). OmniBench is distinguished by high-quality human annotations, ensuring that accurate responses require integrated understanding and reasoning across all three modalities. Our main findings reveal that: i) open-source OLMs exhibit critical limitations in instruction-following and reasoning capabilities within tri-modal contexts; and ii) the baseline models perform poorly (below 50% accuracy) even when provided with alternative textual representations of images and audio. These results suggest that the ability to construct a consistent context from text, image, and audio is often overlooked in existing MLLM training paradigms. We advocate for future research to focus on developing more robust tri-modal integration techniques and training strategies to enhance OLM performance across diverse modalities. The codes and live leaderboard could be found at https://m-a-p.ai/OmniBench.

  • 20 authors
·
Sep 23, 2024 2

Calibrating Panoramic Depth Estimation for Practical Localization and Mapping

The absolute depth values of surrounding environments provide crucial cues for various assistive technologies, such as localization, navigation, and 3D structure estimation. We propose that accurate depth estimated from panoramic images can serve as a powerful and light-weight input for a wide range of downstream tasks requiring 3D information. While panoramic images can easily capture the surrounding context from commodity devices, the estimated depth shares the limitations of conventional image-based depth estimation; the performance deteriorates under large domain shifts and the absolute values are still ambiguous to infer from 2D observations. By taking advantage of the holistic view, we mitigate such effects in a self-supervised way and fine-tune the network with geometric consistency during the test phase. Specifically, we construct a 3D point cloud from the current depth prediction and project the point cloud at various viewpoints or apply stretches on the current input image to generate synthetic panoramas. Then we minimize the discrepancy of the 3D structure estimated from synthetic images without collecting additional data. We empirically evaluate our method in robot navigation and map-free localization where our method shows large performance enhancements. Our calibration method can therefore widen the applicability under various external conditions, serving as a key component for practical panorama-based machine vision systems.

  • 3 authors
·
Aug 27, 2023

Thinking in 360°: Humanoid Visual Search in the Wild

Humans rely on the synergistic control of head (cephalomotor) and eye (oculomotor) to efficiently search for visual information in 360°. However, prior approaches to visual search are limited to a static image, neglecting the physical embodiment and its interaction with the 3D world. How can we develop embodied visual search agents as efficient as humans while bypassing the constraints imposed by real-world hardware? To this end, we propose humanoid visual search where a humanoid agent actively rotates its head to search for objects or paths in an immersive world represented by a 360° panoramic image. To study visual search in visually-crowded real-world scenarios, we build H* Bench, a new benchmark that moves beyond household scenes to challenging in-the-wild scenes that necessitate advanced visual-spatial reasoning capabilities, such as transportation hubs, large-scale retail spaces, urban streets, and public institutions. Our experiments first reveal that even top-tier proprietary models falter, achieving only ~30% success in object and path search. We then use post-training techniques to enhance the open-source Qwen2.5-VL, increasing its success rate by over threefold for both object search (14.83% to 47.38%) and path search (6.44% to 24.94%). Notably, the lower ceiling of path search reveals its inherent difficulty, which we attribute to the demand for sophisticated spatial commonsense. Our results not only show a promising path forward but also quantify the immense challenge that remains in building MLLM agents that can be seamlessly integrated into everyday human life.

  • 12 authors
·
Nov 25

Slow Perception: Let's Perceive Geometric Figures Step-by-step

Recently, "visual o1" began to enter people's vision, with expectations that this slow-thinking design can solve visual reasoning tasks, especially geometric math problems. However, the reality is that current LVLMs (Large Vision Language Models) can hardly even accurately copy a geometric figure, let alone truly understand the complex inherent logic and spatial relationships within geometric shapes. We believe accurate copying (strong perception) is the first step to visual o1. Accordingly, we introduce the concept of "slow perception" (SP), which guides the model to gradually perceive basic point-line combinations, as our humans, reconstruct complex geometric structures progressively. There are two-fold stages in SP: a) perception decomposition. Perception is not instantaneous. In this stage, complex geometric figures are broken down into basic simple units to unify geometry representation. b) perception flow, which acknowledges that accurately tracing a line is not an easy task. This stage aims to avoid "long visual jumps" in regressing line segments by using a proposed "perceptual ruler" to trace each line stroke-by-stroke. Surprisingly, such a human-like perception manner enjoys an inference time scaling law -- the slower, the better. Researchers strive to speed up the model's perception in the past, but we slow it down again, allowing the model to read the image step-by-step and carefully.

  • 8 authors
·
Dec 29, 2024 2

MMPerspective: Do MLLMs Understand Perspective? A Comprehensive Benchmark for Perspective Perception, Reasoning, and Robustness

Understanding perspective is fundamental to human visual perception, yet the extent to which multimodal large language models (MLLMs) internalize perspective geometry remains unclear. We introduce MMPerspective, the first benchmark specifically designed to systematically evaluate MLLMs' understanding of perspective through 10 carefully crafted tasks across three complementary dimensions: Perspective Perception, Reasoning, and Robustness. Our benchmark comprises 2,711 real-world and synthetic image instances with 5,083 question-answer pairs that probe key capabilities, such as vanishing point perception and counting, perspective type reasoning, line relationship understanding in 3D space, invariance to perspective-preserving transformations, etc. Through a comprehensive evaluation of 43 state-of-the-art MLLMs, we uncover significant limitations: while models demonstrate competence on surface-level perceptual tasks, they struggle with compositional reasoning and maintaining spatial consistency under perturbations. Our analysis further reveals intriguing patterns between model architecture, scale, and perspective capabilities, highlighting both robustness bottlenecks and the benefits of chain-of-thought prompting. MMPerspective establishes a valuable testbed for diagnosing and advancing spatial understanding in vision-language systems. Resources available at: https://yunlong10.github.io/MMPerspective/

Proprioceptive Learning with Soft Polyhedral Networks

Proprioception is the "sixth sense" that detects limb postures with motor neurons. It requires a natural integration between the musculoskeletal systems and sensory receptors, which is challenging among modern robots that aim for lightweight, adaptive, and sensitive designs at a low cost. Here, we present the Soft Polyhedral Network with an embedded vision for physical interactions, capable of adaptive kinesthesia and viscoelastic proprioception by learning kinetic features. This design enables passive adaptations to omni-directional interactions, visually captured by a miniature high-speed motion tracking system embedded inside for proprioceptive learning. The results show that the soft network can infer real-time 6D forces and torques with accuracies of 0.25/0.24/0.35 N and 0.025/0.034/0.006 Nm in dynamic interactions. We also incorporate viscoelasticity in proprioception during static adaptation by adding a creep and relaxation modifier to refine the predicted results. The proposed soft network combines simplicity in design, omni-adaptation, and proprioceptive sensing with high accuracy, making it a versatile solution for robotics at a low cost with more than 1 million use cycles for tasks such as sensitive and competitive grasping, and touch-based geometry reconstruction. This study offers new insights into vision-based proprioception for soft robots in adaptive grasping, soft manipulation, and human-robot interaction.

asRobotics AncoraSpring Robotics
·
Aug 16, 2023

Judge Anything: MLLM as a Judge Across Any Modality

Evaluating generative foundation models on open-ended multimodal understanding (MMU) and generation (MMG) tasks across diverse modalities (e.g., images, audio, video) poses significant challenges due to the complexity of cross-modal interactions. To this end, the idea of utilizing Multimodal LLMs (MLLMs) as automated judges has emerged, with encouraging results in assessing vision-language understanding tasks. Moving further, this paper extends MLLM-as-a-Judge across modalities to a unified manner by introducing two benchmarks, TaskAnything and JudgeAnything, to respectively evaluate the overall performance and judging capabilities of MLLMs across any-to-any modality tasks. Specifically, TaskAnything evaluates the MMU and MMG capabilities across 15 any-to-any modality categories, employing 1,500 queries curated from well-established benchmarks. Furthermore, JudgeAnything evaluates the judging capabilities of 5 advanced (e.g., GPT-4o and Gemini-2.0-Flash) from the perspectives of Pair Comparison and Score Evaluation, providing a standardized testbed that incorporates human judgments and detailed rubrics. Our extensive experiments reveal that while these MLLMs show promise in assessing MMU (i.e., achieving an average of 66.55% in Pair Comparison setting and 42.79% in Score Evaluation setting), they encounter significant challenges with MMG tasks (i.e., averaging only 53.37% in Pair Comparison setting and 30.05% in Score Evaluation setting), exposing cross-modality biases and hallucination issues. To address this, we present OmniArena, an automated platform for evaluating omni-models and multimodal reward models. Our work highlights the need for fairer evaluation protocols and stronger alignment with human preferences. The source code and dataset are publicly available at: https://urrealhero.github.io/judgeanythingweb/.

OmniBind: Large-scale Omni Multimodal Representation via Binding Spaces

Recently, human-computer interaction with various modalities has shown promising applications, like GPT-4o and Gemini. Given the foundational role of multimodal joint representation in understanding and generation pipelines, high-quality omni joint representations would be a step toward co-processing more diverse multimodal information. In this work, we present OmniBind, large-scale multimodal joint representation models ranging in scale from 7 billion to 30 billion parameters, which support 3D, audio, image, and language inputs. Due to the scarcity of data pairs across all modalities, instead of training large models from scratch, we propose remapping and binding the spaces of various pre-trained specialist models together. This approach enables "scaling up" by indirectly increasing the model parameters and the amount of seen data. To effectively integrate various spaces, we dynamically assign weights to different spaces by learning routers with two objectives: cross-modal overall alignment and language representation decoupling. Notably, since binding and routing spaces both only require lightweight networks, OmniBind is extremely training-efficient. Learning the largest 30B model requires merely unpaired unimodal data and approximately 3 days on a single 8-4090 node. Extensive experiments demonstrate the versatility and superiority of OmniBind as an omni representation model, highlighting its great potential for diverse applications, such as any-query and composable multimodal understanding.

  • 8 authors
·
Jul 16, 2024 3

OmniBooth: Learning Latent Control for Image Synthesis with Multi-modal Instruction

We present OmniBooth, an image generation framework that enables spatial control with instance-level multi-modal customization. For all instances, the multimodal instruction can be described through text prompts or image references. Given a set of user-defined masks and associated text or image guidance, our objective is to generate an image, where multiple objects are positioned at specified coordinates and their attributes are precisely aligned with the corresponding guidance. This approach significantly expands the scope of text-to-image generation, and elevates it to a more versatile and practical dimension in controllability. In this paper, our core contribution lies in the proposed latent control signals, a high-dimensional spatial feature that provides a unified representation to integrate the spatial, textual, and image conditions seamlessly. The text condition extends ControlNet to provide instance-level open-vocabulary generation. The image condition further enables fine-grained control with personalized identity. In practice, our method empowers users with more flexibility in controllable generation, as users can choose multi-modal conditions from text or images as needed. Furthermore, thorough experiments demonstrate our enhanced performance in image synthesis fidelity and alignment across different tasks and datasets. Project page: https://len-li.github.io/omnibooth-web/

  • 9 authors
·
Oct 7, 2024 2

ROVER: Benchmarking Reciprocal Cross-Modal Reasoning for Omnimodal Generation

Unified multimodal models (UMMs) have emerged as a powerful paradigm for seamlessly unifying text and image understanding and generation. However, prevailing evaluations treat these abilities in isolation, such that tasks with multimodal inputs and outputs are scored primarily through unimodal reasoning, i.e., textual benchmarks emphasize language-based reasoning, while visual benchmarks emphasize reasoning outcomes manifested in the pixels. We introduce ROVER to address this pressing need to test reciprocal cross-modal reasoning, the use of one modality to guide, verify, or refine outputs in the other, an ability central to the vision of unified multimodal intelligence. ROVER is a human-annotated benchmark that explicitly targets reciprocal cross-modal reasoning, which contains 1312 tasks grounded in 1876 images, spanning two complementary settings. Verbally-augmented reasoning for visual generation evaluates whether models can use verbal prompts and reasoning chains to guide faithful image synthesis. Visually-augmented reasoning for verbal generation evaluates whether models can generate intermediate visualizations that strengthen their own reasoning processes for question answering. Experiments on 17 unified models reveal two key findings: (i) Cross-modal reasoning determines visual generation quality, with interleaved models significantly outperforming non-interleaved ones; notably, combining strong unimodal models fails to achieve comparable reasoning. (ii) Models show dissociation between physical and symbolic reasoning: they succeed at interpreting perceptual concepts literally but fail to construct visual abstractions for symbolic tasks, where faulty reasoning harms performance. These results highlight reciprocal cross-modal reasoning as a critical frontier for enabling true omnimodal generation.

OmniVTLA: Vision-Tactile-Language-Action Model with Semantic-Aligned Tactile Sensing

Recent vision-language-action (VLA) models build upon vision-language foundations, and have achieved promising results and exhibit the possibility of task generalization in robot manipulation. However, due to the heterogeneity of tactile sensors and the difficulty of acquiring tactile data, current VLA models significantly overlook the importance of tactile perception and fail in contact-rich tasks. To address this issue, this paper proposes OmniVTLA, a novel architecture involving tactile sensing. Specifically, our contributions are threefold. First, our OmniVTLA features a dual-path tactile encoder framework. This framework enhances tactile perception across diverse vision-based and force-based tactile sensors by using a pretrained vision transformer (ViT) and a semantically-aligned tactile ViT (SA-ViT). Second, we introduce ObjTac, a comprehensive force-based tactile dataset capturing textual, visual, and tactile information for 56 objects across 10 categories. With 135K tri-modal samples, ObjTac supplements existing visuo-tactile datasets. Third, leveraging this dataset, we train a semantically-aligned tactile encoder to learn a unified tactile representation, serving as a better initialization for OmniVTLA. Real-world experiments demonstrate substantial improvements over state-of-the-art VLA baselines, achieving 96.9% success rates with grippers, (21.9% higher over baseline) and 100% success rates with dexterous hands (6.2% higher over baseline) in pick-and-place tasks. Besides, OmniVTLA significantly reduces task completion time and generates smoother trajectories through tactile sensing compared to existing VLA. Our ObjTac dataset can be found at https://readerek.github.io/Objtac.github.io

  • 7 authors
·
Aug 12

The Other Mind: How Language Models Exhibit Human Temporal Cognition

As Large Language Models (LLMs) continue to advance, they exhibit certain cognitive patterns similar to those of humans that are not directly specified in training data. This study investigates this phenomenon by focusing on temporal cognition in LLMs. Leveraging the similarity judgment task, we find that larger models spontaneously establish a subjective temporal reference point and adhere to the Weber-Fechner law, whereby the perceived distance logarithmically compresses as years recede from this reference point. To uncover the mechanisms behind this behavior, we conducted multiple analyses across neuronal, representational, and informational levels. We first identify a set of temporal-preferential neurons and find that this group exhibits minimal activation at the subjective reference point and implements a logarithmic coding scheme convergently found in biological systems. Probing representations of years reveals a hierarchical construction process, where years evolve from basic numerical values in shallow layers to abstract temporal orientation in deep layers. Finally, using pre-trained embedding models, we found that the training corpus itself possesses an inherent, non-linear temporal structure, which provides the raw material for the model's internal construction. In discussion, we propose an experientialist perspective for understanding these findings, where the LLMs' cognition is viewed as a subjective construction of the external world by its internal representational system. This nuanced perspective implies the potential emergence of alien cognitive frameworks that humans cannot intuitively predict, pointing toward a direction for AI alignment that focuses on guiding internal constructions. Our code is available at https://TheOtherMind.github.io.

  • 6 authors
·
Jul 21

Zero-Shot Vision-and-Language Navigation with Collision Mitigation in Continuous Environment

We propose the zero-shot Vision-and-Language Navigation with Collision Mitigation (VLN-CM), which takes these considerations. VLN-CM is composed of four modules and predicts the direction and distance of the next movement at each step. We utilize large foundation models for each modules. To select the direction, we use the Attention Spot Predictor (ASP), View Selector (VS), and Progress Monitor (PM). The ASP employs a Large Language Model (e.g. ChatGPT) to split navigation instructions into attention spots, which are objects or scenes at the location to move to (e.g. a yellow door). The VS selects from panorama images provided at 30-degree intervals the one that includes the attention spot, using CLIP similarity. We then choose the angle of the selected image as the direction to move in. The PM uses a rule-based approach to decide which attention spot to focus on next, among multiple spots derived from the instructions. If the similarity between the current attention spot and the visual observations decreases consecutively at each step, the PM determines that the agent has passed the current spot and moves on to the next one. For selecting the distance to move, we employed the Open Map Predictor (OMP). The OMP uses panorama depth information to predict an occupancy mask. We then selected a collision-free distance in the predicted direction based on the occupancy mask. We evaluated our method using the validation data of VLN-CE. Our approach showed better performance than several baseline methods, and the OPM was effective in mitigating collisions for the agent.

  • 4 authors
·
Oct 7, 2024

Exploring the Evolution of Physics Cognition in Video Generation: A Survey

Recent advancements in video generation have witnessed significant progress, especially with the rapid advancement of diffusion models. Despite this, their deficiencies in physical cognition have gradually received widespread attention - generated content often violates the fundamental laws of physics, falling into the dilemma of ''visual realism but physical absurdity". Researchers began to increasingly recognize the importance of physical fidelity in video generation and attempted to integrate heuristic physical cognition such as motion representations and physical knowledge into generative systems to simulate real-world dynamic scenarios. Considering the lack of a systematic overview in this field, this survey aims to provide a comprehensive summary of architecture designs and their applications to fill this gap. Specifically, we discuss and organize the evolutionary process of physical cognition in video generation from a cognitive science perspective, while proposing a three-tier taxonomy: 1) basic schema perception for generation, 2) passive cognition of physical knowledge for generation, and 3) active cognition for world simulation, encompassing state-of-the-art methods, classical paradigms, and benchmarks. Subsequently, we emphasize the inherent key challenges in this domain and delineate potential pathways for future research, contributing to advancing the frontiers of discussion in both academia and industry. Through structured review and interdisciplinary analysis, this survey aims to provide directional guidance for developing interpretable, controllable, and physically consistent video generation paradigms, thereby propelling generative models from the stage of ''visual mimicry'' towards a new phase of ''human-like physical comprehension''.

  • 11 authors
·
Mar 27 2