new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

Emotional Conversation: Empowering Talking Faces with Cohesive Expression, Gaze and Pose Generation

Vivid talking face generation holds immense potential applications across diverse multimedia domains, such as film and game production. While existing methods accurately synchronize lip movements with input audio, they typically ignore crucial alignments between emotion and facial cues, which include expression, gaze, and head pose. These alignments are indispensable for synthesizing realistic videos. To address these issues, we propose a two-stage audio-driven talking face generation framework that employs 3D facial landmarks as intermediate variables. This framework achieves collaborative alignment of expression, gaze, and pose with emotions through self-supervised learning. Specifically, we decompose this task into two key steps, namely speech-to-landmarks synthesis and landmarks-to-face generation. The first step focuses on simultaneously synthesizing emotionally aligned facial cues, including normalized landmarks that represent expressions, gaze, and head pose. These cues are subsequently reassembled into relocated facial landmarks. In the second step, these relocated landmarks are mapped to latent key points using self-supervised learning and then input into a pretrained model to create high-quality face images. Extensive experiments on the MEAD dataset demonstrate that our model significantly advances the state-of-the-art performance in both visual quality and emotional alignment.

  • 2 authors
·
Jun 12, 2024

A Lightweight Face Quality Assessment Framework to Improve Face Verification Performance in Real-Time Screening Applications

Face image quality plays a critical role in determining the accuracy and reliability of face verification systems, particularly in real-time screening applications such as surveillance, identity verification, and access control. Low-quality face images, often caused by factors such as motion blur, poor lighting conditions, occlusions, and extreme pose variations, significantly degrade the performance of face recognition models, leading to higher false rejection and false acceptance rates. In this work, we propose a lightweight yet effective framework for automatic face quality assessment, which aims to pre-filter low-quality face images before they are passed to the verification pipeline. Our approach utilises normalised facial landmarks in conjunction with a Random Forest Regression classifier to assess image quality, achieving an accuracy of 96.67%. By integrating this quality assessment module into the face verification process, we observe a substantial improvement in performance, including a comfortable 99.7% reduction in the false rejection rate and enhanced cosine similarity scores when paired with the ArcFace face verification model. To validate our approach, we have conducted experiments on a real-world dataset collected comprising over 600 subjects captured from CCTV footage in unconstrained environments within Dubai Police. Our results demonstrate that the proposed framework effectively mitigates the impact of poor-quality face images, outperforming existing face quality assessment techniques while maintaining computational efficiency. Moreover, the framework specifically addresses two critical challenges in real-time screening: variations in face resolution and pose deviations, both of which are prevalent in practical surveillance scenarios.

  • 8 authors
·
Jul 21