new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 9

Music Source Separation in the Waveform Domain

Source separation for music is the task of isolating contributions, or stems, from different instruments recorded individually and arranged together to form a song. Such components include voice, bass, drums and any other accompaniments.Contrarily to many audio synthesis tasks where the best performances are achieved by models that directly generate the waveform, the state-of-the-art in source separation for music is to compute masks on the magnitude spectrum. In this paper, we compare two waveform domain architectures. We first adapt Conv-Tasnet, initially developed for speech source separation,to the task of music source separation. While Conv-Tasnet beats many existing spectrogram-domain methods, it suffersfrom significant artifacts, as shown by human evaluations. We propose instead Demucs, a novel waveform-to-waveform model,with a U-Net structure and bidirectional LSTM.Experiments on the MusDB dataset show that, with proper data augmentation, Demucs beats allexisting state-of-the-art architectures, including Conv-Tasnet, with 6.3 SDR on average, (and up to 6.8 with 150 extra training songs, even surpassing the IRM oracle for the bass source).Using recent development in model quantization, Demucs can be compressed down to 120MBwithout any loss of accuracy.We also provide human evaluations, showing that Demucs benefit from a large advantagein terms of the naturalness of the audio. However, it suffers from some bleeding,especially between the vocals and other source.

  • 4 authors
·
Nov 27, 2019

Reconstructing the Charlie Parker Omnibook using an audio-to-score automatic transcription pipeline

The Charlie Parker Omnibook is a cornerstone of jazz music education, described by pianist Ethan Iverson as "the most important jazz education text ever published". In this work we propose a new transcription pipeline and explore the extent to which state of the art music technology is able to reconstruct these scores directly from the audio without human intervention. Our pipeline includes: a newly trained source separation model for saxophone, a new MIDI transcription model for solo saxophone and an adaptation of an existing MIDI-to-score method for monophonic instruments. To assess this pipeline we also provide an enhanced dataset of Charlie Parker transcriptions as score-audio pairs with accurate MIDI alignments and downbeat annotations. This represents a challenging new benchmark for automatic audio-to-score transcription that we hope will advance research into areas beyond transcribing audio-to-MIDI alone. Together, these form another step towards producing scores that musicians can use directly, without the need for onerous corrections or revisions. To facilitate future research, all model checkpoints and data are made available to download along with code for the transcription pipeline. Improvements in our modular pipeline could one day make the automatic transcription of complex jazz solos a routine possibility, thereby enriching the resources available for music education and preservation.

  • 2 authors
·
May 26, 2024

SonicSim: A customizable simulation platform for speech processing in moving sound source scenarios

The systematic evaluation of speech separation and enhancement models under moving sound source conditions typically requires extensive data comprising diverse scenarios. However, real-world datasets often contain insufficient data to meet the training and evaluation requirements of models. Although synthetic datasets offer a larger volume of data, their acoustic simulations lack realism. Consequently, neither real-world nor synthetic datasets effectively fulfill practical needs. To address these issues, we introduce SonicSim, a synthetic toolkit de-designed to generate highly customizable data for moving sound sources. SonicSim is developed based on the embodied AI simulation platform, Habitat-sim, supporting multi-level adjustments, including scene-level, microphone-level, and source-level, thereby generating more diverse synthetic data. Leveraging SonicSim, we constructed a moving sound source benchmark dataset, SonicSet, using the Librispeech, the Freesound Dataset 50k (FSD50K) and Free Music Archive (FMA), and 90 scenes from the Matterport3D to evaluate speech separation and enhancement models. Additionally, to validate the differences between synthetic data and real-world data, we randomly selected 5 hours of raw data without reverberation from the SonicSet validation set to record a real-world speech separation dataset, which was then compared with the corresponding synthetic datasets. Similarly, we utilized the real-world speech enhancement dataset RealMAN to validate the acoustic gap between other synthetic datasets and the SonicSet dataset for speech enhancement. The results indicate that the synthetic data generated by SonicSim can effectively generalize to real-world scenarios. Demo and code are publicly available at https://cslikai.cn/SonicSim/.

  • 6 authors
·
Oct 2, 2024 2

Exploiting Music Source Separation for Automatic Lyrics Transcription with Whisper

Automatic lyrics transcription (ALT) remains a challenging task in the field of music information retrieval, despite great advances in automatic speech recognition (ASR) brought about by transformer-based architectures in recent years. One of the major challenges in ALT is the high amplitude of interfering audio signals relative to conventional ASR due to musical accompaniment. Recent advances in music source separation have enabled automatic extraction of high-quality separated vocals, which could potentially improve ALT performance. However, the effect of source separation has not been systematically investigated in order to establish best practices for its use. This work examines the impact of source separation on ALT using Whisper, a state-of-the-art open source ASR model. We evaluate Whisper's performance on original audio, separated vocals, and vocal stems across short-form and long-form transcription tasks. For short-form, we suggest a concatenation method that results in a consistent reduction in Word Error Rate (WER). For long-form, we propose an algorithm using source separation as a vocal activity detector to derive segment boundaries, which results in a consistent reduction in WER relative to Whisper's native long-form algorithm. Our approach achieves state-of-the-art results for an open source system on the Jam-ALT long-form ALT benchmark, without any training or fine-tuning. We also publish MUSDB-ALT, the first dataset of long-form lyric transcripts following the Jam-ALT guidelines for which vocal stems are publicly available.

  • 4 authors
·
Jun 18, 2025

Machine Perceptual Quality: Evaluating the Impact of Severe Lossy Compression on Audio and Image Models

In the field of neural data compression, the prevailing focus has been on optimizing algorithms for either classical distortion metrics, such as PSNR or SSIM, or human perceptual quality. With increasing amounts of data consumed by machines rather than humans, a new paradigm of machine-oriented compressionx2013which prioritizes the retention of features salient for machine perception over traditional human-centric criteriax2013has emerged, creating several new challenges to the development, evaluation, and deployment of systems utilizing lossy compression. In particular, it is unclear how different approaches to lossy compression will affect the performance of downstream machine perception tasks. To address this under-explored area, we evaluate various perception modelsx2013including image classification, image segmentation, speech recognition, and music source separationx2013under severe lossy compression. We utilize several popular codecs spanning conventional, neural, and generative compression architectures. Our results indicate three key findings: (1) using generative compression, it is feasible to leverage highly compressed data while incurring a negligible impact on machine perceptual quality; (2) machine perceptual quality correlates strongly with deep similarity metrics, indicating a crucial role of these metrics in the development of machine-oriented codecs; and (3) using lossy compressed datasets, (e.g. ImageNet) for pre-training can lead to counter-intuitive scenarios where lossy compression increases machine perceptual quality rather than degrading it. To encourage engagement on this growing area of research, our code and experiments are available at: https://github.com/danjacobellis/MPQ.

  • 3 authors
·
Jan 15, 2024

Zero-shot Audio Source Separation through Query-based Learning from Weakly-labeled Data

Deep learning techniques for separating audio into different sound sources face several challenges. Standard architectures require training separate models for different types of audio sources. Although some universal separators employ a single model to target multiple sources, they have difficulty generalizing to unseen sources. In this paper, we propose a three-component pipeline to train a universal audio source separator from a large, but weakly-labeled dataset: AudioSet. First, we propose a transformer-based sound event detection system for processing weakly-labeled training data. Second, we devise a query-based audio separation model that leverages this data for model training. Third, we design a latent embedding processor to encode queries that specify audio targets for separation, allowing for zero-shot generalization. Our approach uses a single model for source separation of multiple sound types, and relies solely on weakly-labeled data for training. In addition, the proposed audio separator can be used in a zero-shot setting, learning to separate types of audio sources that were never seen in training. To evaluate the separation performance, we test our model on MUSDB18, while training on the disjoint AudioSet. We further verify the zero-shot performance by conducting another experiment on audio source types that are held-out from training. The model achieves comparable Source-to-Distortion Ratio (SDR) performance to current supervised models in both cases.

  • 6 authors
·
Dec 15, 2021

Universal Source Separation with Weakly Labelled Data

Universal source separation (USS) is a fundamental research task for computational auditory scene analysis, which aims to separate mono recordings into individual source tracks. There are three potential challenges awaiting the solution to the audio source separation task. First, previous audio source separation systems mainly focus on separating one or a limited number of specific sources. There is a lack of research on building a unified system that can separate arbitrary sources via a single model. Second, most previous systems require clean source data to train a separator, while clean source data are scarce. Third, there is a lack of USS system that can automatically detect and separate active sound classes in a hierarchical level. To use large-scale weakly labeled/unlabeled audio data for audio source separation, we propose a universal audio source separation framework containing: 1) an audio tagging model trained on weakly labeled data as a query net; and 2) a conditional source separation model that takes query net outputs as conditions to separate arbitrary sound sources. We investigate various query nets, source separation models, and training strategies and propose a hierarchical USS strategy to automatically detect and separate sound classes from the AudioSet ontology. By solely leveraging the weakly labelled AudioSet, our USS system is successful in separating a wide variety of sound classes, including sound event separation, music source separation, and speech enhancement. The USS system achieves an average signal-to-distortion ratio improvement (SDRi) of 5.57 dB over 527 sound classes of AudioSet; 10.57 dB on the DCASE 2018 Task 2 dataset; 8.12 dB on the MUSDB18 dataset; an SDRi of 7.28 dB on the Slakh2100 dataset; and an SSNR of 9.00 dB on the voicebank-demand dataset. We release the source code at https://github.com/bytedance/uss

  • 7 authors
·
May 11, 2023

High-Quality Sound Separation Across Diverse Categories via Visually-Guided Generative Modeling

We propose DAVIS, a Diffusion-based Audio-VIsual Separation framework that solves the audio-visual sound source separation task through generative learning. Existing methods typically frame sound separation as a mask-based regression problem, achieving significant progress. However, they face limitations in capturing the complex data distribution required for high-quality separation of sounds from diverse categories. In contrast, DAVIS circumvents these issues by leveraging potent generative modeling paradigms, specifically Denoising Diffusion Probabilistic Models (DDPM) and the more recent Flow Matching (FM), integrated within a specialized Separation U-Net architecture. Our framework operates by synthesizing the desired separated sound spectrograms directly from a noise distribution, conditioned concurrently on the mixed audio input and associated visual information. The inherent nature of its generative objective makes DAVIS particularly adept at producing high-quality sound separations for diverse sound categories. We present comparative evaluations of DAVIS, encompassing both its DDPM and Flow Matching variants, against leading methods on the standard AVE and MUSIC datasets. The results affirm that both variants surpass existing approaches in separation quality, highlighting the efficacy of our generative framework for tackling the audio-visual source separation task.

  • 5 authors
·
Sep 26, 2025

Show Me the Instruments: Musical Instrument Retrieval from Mixture Audio

As digital music production has become mainstream, the selection of appropriate virtual instruments plays a crucial role in determining the quality of music. To search the musical instrument samples or virtual instruments that make one's desired sound, music producers use their ears to listen and compare each instrument sample in their collection, which is time-consuming and inefficient. In this paper, we call this task as Musical Instrument Retrieval and propose a method for retrieving desired musical instruments using reference music mixture as a query. The proposed model consists of the Single-Instrument Encoder and the Multi-Instrument Encoder, both based on convolutional neural networks. The Single-Instrument Encoder is trained to classify the instruments used in single-track audio, and we take its penultimate layer's activation as the instrument embedding. The Multi-Instrument Encoder is trained to estimate multiple instrument embeddings using the instrument embeddings computed by the Single-Instrument Encoder as a set of target embeddings. For more generalized training and realistic evaluation, we also propose a new dataset called Nlakh. Experimental results showed that the Single-Instrument Encoder was able to learn the mapping from the audio signal of unseen instruments to the instrument embedding space and the Multi-Instrument Encoder was able to extract multiple embeddings from the mixture of music and retrieve the desired instruments successfully. The code used for the experiment and audio samples are available at: https://github.com/minju0821/musical_instrument_retrieval

  • 7 authors
·
Nov 15, 2022

Singing Voice Separation Using a Deep Convolutional Neural Network Trained by Ideal Binary Mask and Cross Entropy

Separating a singing voice from its music accompaniment remains an important challenge in the field of music information retrieval. We present a unique neural network approach inspired by a technique that has revolutionized the field of vision: pixel-wise image classification, which we combine with cross entropy loss and pretraining of the CNN as an autoencoder on singing voice spectrograms. The pixel-wise classification technique directly estimates the sound source label for each time-frequency (T-F) bin in our spectrogram image, thus eliminating common pre- and postprocessing tasks. The proposed network is trained by using the Ideal Binary Mask (IBM) as the target output label. The IBM identifies the dominant sound source in each T-F bin of the magnitude spectrogram of a mixture signal, by considering each T-F bin as a pixel with a multi-label (for each sound source). Cross entropy is used as the training objective, so as to minimize the average probability error between the target and predicted label for each pixel. By treating the singing voice separation problem as a pixel-wise classification task, we additionally eliminate one of the commonly used, yet not easy to comprehend, postprocessing steps: the Wiener filter postprocessing. The proposed CNN outperforms the first runner up in the Music Information Retrieval Evaluation eXchange (MIREX) 2016 and the winner of MIREX 2014 with a gain of 2.2702 ~ 5.9563 dB global normalized source to distortion ratio (GNSDR) when applied to the iKala dataset. An experiment with the DSD100 dataset on the full-tracks song evaluation task also shows that our model is able to compete with cutting-edge singing voice separation systems which use multi-channel modeling, data augmentation, and model blending.

  • 5 authors
·
Dec 4, 2018

CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled Videos

Recent years have seen progress beyond domain-specific sound separation for speech or music towards universal sound separation for arbitrary sounds. Prior work on universal sound separation has investigated separating a target sound out of an audio mixture given a text query. Such text-queried sound separation systems provide a natural and scalable interface for specifying arbitrary target sounds. However, supervised text-queried sound separation systems require costly labeled audio-text pairs for training. Moreover, the audio provided in existing datasets is often recorded in a controlled environment, causing a considerable generalization gap to noisy audio in the wild. In this work, we aim to approach text-queried universal sound separation by using only unlabeled data. We propose to leverage the visual modality as a bridge to learn the desired audio-textual correspondence. The proposed CLIPSep model first encodes the input query into a query vector using the contrastive language-image pretraining (CLIP) model, and the query vector is then used to condition an audio separation model to separate out the target sound. While the model is trained on image-audio pairs extracted from unlabeled videos, at test time we can instead query the model with text inputs in a zero-shot setting, thanks to the joint language-image embedding learned by the CLIP model. Further, videos in the wild often contain off-screen sounds and background noise that may hinder the model from learning the desired audio-textual correspondence. To address this problem, we further propose an approach called noise invariant training for training a query-based sound separation model on noisy data. Experimental results show that the proposed models successfully learn text-queried universal sound separation using only noisy unlabeled videos, even achieving competitive performance against a supervised model in some settings.

  • 5 authors
·
Dec 14, 2022

Text-Queried Audio Source Separation via Hierarchical Modeling

Target audio source separation with natural language queries presents a promising paradigm for extracting arbitrary audio events through arbitrary text descriptions. Existing methods mainly face two challenges, the difficulty in jointly modeling acoustic-textual alignment and semantic-aware separation within a blindly-learned single-stage architecture, and the reliance on large-scale accurately-labeled training data to compensate for inefficient cross-modal learning and separation. To address these challenges, we propose a hierarchical decomposition framework, HSM-TSS, that decouples the task into global-local semantic-guided feature separation and structure-preserving acoustic reconstruction. Our approach introduces a dual-stage mechanism for semantic separation, operating on distinct global and local semantic feature spaces. We first perform global-semantic separation through a global semantic feature space aligned with text queries. A Q-Audio architecture is employed to align audio and text modalities, serving as pretrained global-semantic encoders. Conditioned on the predicted global feature, we then perform the second-stage local-semantic separation on AudioMAE features that preserve time-frequency structures, followed by acoustic reconstruction. We also propose an instruction processing pipeline to parse arbitrary text queries into structured operations, extraction or removal, coupled with audio descriptions, enabling flexible sound manipulation. Our method achieves state-of-the-art separation performance with data-efficient training while maintaining superior semantic consistency with queries in complex auditory scenes.

  • 5 authors
·
May 27, 2025

Towards Reliable Objective Evaluation Metrics for Generative Singing Voice Separation Models

Traditional Blind Source Separation Evaluation (BSS-Eval) metrics were originally designed to evaluate linear audio source separation models based on methods such as time-frequency masking. However, recent generative models may introduce nonlinear relationships between the separated and reference signals, limiting the reliability of these metrics for objective evaluation. To address this issue, we conduct a Degradation Category Rating listening test and analyze correlations between the obtained degradation mean opinion scores (DMOS) and a set of objective audio quality metrics for the task of singing voice separation. We evaluate three state-of-the-art discriminative models and two new competitive generative models. For both discriminative and generative models, intrusive embedding-based metrics show higher correlations with DMOS than conventional intrusive metrics such as BSS-Eval. For discriminative models, the highest correlation is achieved by the MSE computed on Music2Latent embeddings. When it comes to the evaluation of generative models, the strongest correlations are evident for the multi-resolution STFT loss and the MSE calculated on MERT-L12 embeddings, with the latter also providing the most balanced correlation across both model types. Our results highlight the limitations of BSS-Eval metrics for evaluating generative singing voice separation models and emphasize the need for careful selection and validation of alternative evaluation metrics for the task of singing voice separation.

  • 4 authors
·
Jul 15, 2025

Weakly-supervised Audio Separation via Bi-modal Semantic Similarity

Conditional sound separation in multi-source audio mixtures without having access to single source sound data during training is a long standing challenge. Existing mix-and-separate based methods suffer from significant performance drop with multi-source training mixtures due to the lack of supervision signal for single source separation cases during training. However, in the case of language-conditional audio separation, we do have access to corresponding text descriptions for each audio mixture in our training data, which can be seen as (rough) representations of the audio samples in the language modality. To this end, in this paper, we propose a generic bi-modal separation framework which can enhance the existing unsupervised frameworks to separate single-source signals in a target modality (i.e., audio) using the easily separable corresponding signals in the conditioning modality (i.e., language), without having access to single-source samples in the target modality during training. We empirically show that this is well within reach if we have access to a pretrained joint embedding model between the two modalities (i.e., CLAP). Furthermore, we propose to incorporate our framework into two fundamental scenarios to enhance separation performance. First, we show that our proposed methodology significantly improves the performance of purely unsupervised baselines by reducing the distribution shift between training and test samples. In particular, we show that our framework can achieve 71% boost in terms of Signal-to-Distortion Ratio (SDR) over the baseline, reaching 97.5% of the supervised learning performance. Second, we show that we can further improve the performance of the supervised learning itself by 17% if we augment it by our proposed weakly-supervised framework, that enables a powerful semi-supervised framework for audio separation.

  • 4 authors
·
Apr 2, 2024

FlowSep: Language-Queried Sound Separation with Rectified Flow Matching

Language-queried audio source separation (LASS) focuses on separating sounds using textual descriptions of the desired sources. Current methods mainly use discriminative approaches, such as time-frequency masking, to separate target sounds and minimize interference from other sources. However, these models face challenges when separating overlapping soundtracks, which may lead to artifacts such as spectral holes or incomplete separation. Rectified flow matching (RFM), a generative model that establishes linear relations between the distribution of data and noise, offers superior theoretical properties and simplicity, but has not yet been explored in sound separation. In this work, we introduce FlowSep, a new generative model based on RFM for LASS tasks. FlowSep learns linear flow trajectories from noise to target source features within the variational autoencoder (VAE) latent space. During inference, the RFM-generated latent features are reconstructed into a mel-spectrogram via the pre-trained VAE decoder, followed by a pre-trained vocoder to synthesize the waveform. Trained on 1,680 hours of audio data, FlowSep outperforms the state-of-the-art models across multiple benchmarks, as evaluated with subjective and objective metrics. Additionally, our results show that FlowSep surpasses a diffusion-based LASS model in both separation quality and inference efficiency, highlighting its strong potential for audio source separation tasks. Code, pre-trained models and demos can be found at: https://audio-agi.github.io/FlowSep_demo/.

  • 5 authors
·
Sep 11, 2024

Language-Guided Music Recommendation for Video via Prompt Analogies

We propose a method to recommend music for an input video while allowing a user to guide music selection with free-form natural language. A key challenge of this problem setting is that existing music video datasets provide the needed (video, music) training pairs, but lack text descriptions of the music. This work addresses this challenge with the following three contributions. First, we propose a text-synthesis approach that relies on an analogy-based prompting procedure to generate natural language music descriptions from a large-scale language model (BLOOM-176B) given pre-trained music tagger outputs and a small number of human text descriptions. Second, we use these synthesized music descriptions to train a new trimodal model, which fuses text and video input representations to query music samples. For training, we introduce a text dropout regularization mechanism which we show is critical to model performance. Our model design allows for the retrieved music audio to agree with the two input modalities by matching visual style depicted in the video and musical genre, mood, or instrumentation described in the natural language query. Third, to evaluate our approach, we collect a testing dataset for our problem by annotating a subset of 4k clips from the YT8M-MusicVideo dataset with natural language music descriptions which we make publicly available. We show that our approach can match or exceed the performance of prior methods on video-to-music retrieval while significantly improving retrieval accuracy when using text guidance.

  • 4 authors
·
Jun 15, 2023

MAPSS: Manifold-based Assessment of Perceptual Source Separation

Objective assessment of source-separation systems still mismatches subjective human perception, especially when leakage and self-distortion interact. We introduce the Perceptual Separation (PS) and Perceptual Match (PM), the first pair of measures that functionally isolate these two factors. Our intrusive method begins with generating a bank of fundamental distortions for each reference waveform signal in the mixture. Distortions, references, and their respective system outputs from all sources are then independently encoded by a pre-trained self-supervised learning model. These representations are aggregated and projected onto a manifold via diffusion maps, which aligns Euclidean distances on the manifold with dissimilarities of the encoded waveforms. On this manifold, the PM measures the Mahalanobis distance from each output to its attributed cluster that consists of its reference and distortions embeddings, capturing self-distortion. The PS accounts for the Mahalanobis distance of the output to the attributed and to the closest non-attributed clusters, quantifying leakage. Both measures are differentiable and granular, operating at a resolution as low as 50 frames per second. We further derive, for both measures, deterministic error radius and non-asymptotic, high-probability confidence intervals (CIs). Experiments on English, Spanish, and music mixtures show that the PS and PM nearly always achieve the highest linear correlation coefficients with human mean-opinion scores than 14 competitors, reaching as high as 86.36% for speech and 87.21% for music. We observe, at worst, an error radius of 1.39% and a probabilistic 95% CI of 12.21% for these coefficients, which improves reliable and informed evaluation. Using mutual information, the measures complement each other most as their values decrease, suggesting they are jointly more informative as system performance degrades.

  • 3 authors
·
Sep 11, 2025

Representation, Exploration and Recommendation of Music Playlists

Playlists have become a significant part of our listening experience because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in the usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing, have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. We can apply similar concepts to music to learn fixed length representations for playlists and use those representations for downstream tasks such as playlist discovery, browsing, and recommendation. In this work, we formulate the problem of learning a fixed-length playlist representation in an unsupervised manner, using Sequence-to-sequence (Seq2seq) models, interpreting playlists as sentences and songs as words. We compare our model with two other encoding architectures for baseline comparison. We evaluate our work using the suite of tasks commonly used for assessing sentence embeddings, along with a few additional tasks pertaining to music, and a recommendation task to study the traits captured by the playlist embeddings and their effectiveness for the purpose of music recommendation.

  • 3 authors
·
Jul 1, 2019

Mustango: Toward Controllable Text-to-Music Generation

With recent advancements in text-to-audio and text-to-music based on latent diffusion models, the quality of generated content has been reaching new heights. The controllability of musical aspects, however, has not been explicitly explored in text-to-music systems yet. In this paper, we present Mustango, a music-domain-knowledge-inspired text-to-music system based on diffusion, that expands the Tango text-to-audio model. Mustango aims to control the generated music, not only with general text captions, but from more rich captions that could include specific instructions related to chords, beats, tempo, and key. As part of Mustango, we propose MuNet, a Music-Domain-Knowledge-Informed UNet sub-module to integrate these music-specific features, which we predict from the text prompt, as well as the general text embedding, into the diffusion denoising process. To overcome the limited availability of open datasets of music with text captions, we propose a novel data augmentation method that includes altering the harmonic, rhythmic, and dynamic aspects of music audio and using state-of-the-art Music Information Retrieval methods to extract the music features which will then be appended to the existing descriptions in text format. We release the resulting MusicBench dataset which contains over 52K instances and includes music-theory-based descriptions in the caption text. Through extensive experiments, we show that the quality of the music generated by Mustango is state-of-the-art, and the controllability through music-specific text prompts greatly outperforms other models in terms of desired chords, beat, key, and tempo, on multiple datasets.

  • 6 authors
·
Nov 14, 2023 1

Self-Supervised Contrastive Learning for Robust Audio-Sheet Music Retrieval Systems

Linking sheet music images to audio recordings remains a key problem for the development of efficient cross-modal music retrieval systems. One of the fundamental approaches toward this task is to learn a cross-modal embedding space via deep neural networks that is able to connect short snippets of audio and sheet music. However, the scarcity of annotated data from real musical content affects the capability of such methods to generalize to real retrieval scenarios. In this work, we investigate whether we can mitigate this limitation with self-supervised contrastive learning, by exposing a network to a large amount of real music data as a pre-training step, by contrasting randomly augmented views of snippets of both modalities, namely audio and sheet images. Through a number of experiments on synthetic and real piano data, we show that pre-trained models are able to retrieve snippets with better precision in all scenarios and pre-training configurations. Encouraged by these results, we employ the snippet embeddings in the higher-level task of cross-modal piece identification and conduct more experiments on several retrieval configurations. In this task, we observe that the retrieval quality improves from 30% up to 100% when real music data is present. We then conclude by arguing for the potential of self-supervised contrastive learning for alleviating the annotated data scarcity in multi-modal music retrieval models.

  • 3 authors
·
Sep 21, 2023

Mel-RoFormer for Vocal Separation and Vocal Melody Transcription

Developing a versatile deep neural network to model music audio is crucial in MIR. This task is challenging due to the intricate spectral variations inherent in music signals, which convey melody, harmonics, and timbres of diverse instruments. In this paper, we introduce Mel-RoFormer, a spectrogram-based model featuring two key designs: a novel Mel-band Projection module at the front-end to enhance the model's capability to capture informative features across multiple frequency bands, and interleaved RoPE Transformers to explicitly model the frequency and time dimensions as two separate sequences. We apply Mel-RoFormer to tackle two essential MIR tasks: vocal separation and vocal melody transcription, aimed at isolating singing voices from audio mixtures and transcribing their lead melodies, respectively. Despite their shared focus on singing signals, these tasks possess distinct optimization objectives. Instead of training a unified model, we adopt a two-step approach. Initially, we train a vocal separation model, which subsequently serves as a foundation model for fine-tuning for vocal melody transcription. Through extensive experiments conducted on benchmark datasets, we showcase that our models achieve state-of-the-art performance in both vocal separation and melody transcription tasks, underscoring the efficacy and versatility of Mel-RoFormer in modeling complex music audio signals.

  • 3 authors
·
Sep 6, 2024

Contrastive Learning of Musical Representations

While deep learning has enabled great advances in many areas of music, labeled music datasets remain especially hard, expensive, and time-consuming to create. In this work, we introduce SimCLR to the music domain and contribute a large chain of audio data augmentations to form a simple framework for self-supervised, contrastive learning of musical representations: CLMR. This approach works on raw time-domain music data and requires no labels to learn useful representations. We evaluate CLMR in the downstream task of music classification on the MagnaTagATune and Million Song datasets and present an ablation study to test which of our music-related innovations over SimCLR are most effective. A linear classifier trained on the proposed representations achieves a higher average precision than supervised models on the MagnaTagATune dataset, and performs comparably on the Million Song dataset. Moreover, we show that CLMR's representations are transferable using out-of-domain datasets, indicating that our method has strong generalisability in music classification. Lastly, we show that the proposed method allows data-efficient learning on smaller labeled datasets: we achieve an average precision of 33.1% despite using only 259 labeled songs in the MagnaTagATune dataset (1% of the full dataset) during linear evaluation. To foster reproducibility and future research on self-supervised learning in music, we publicly release the pre-trained models and the source code of all experiments of this paper.

  • 2 authors
·
Mar 16, 2021

SONICS: Synthetic Or Not -- Identifying Counterfeit Songs

The recent surge in AI-generated songs presents exciting possibilities and challenges. While these tools democratize music creation, they also necessitate the ability to distinguish between human-composed and AI-generated songs for safeguarding artistic integrity and content curation. Existing research and datasets in fake song detection only focus on singing voice deepfake detection (SVDD), where the vocals are AI-generated but the instrumental music is sourced from real songs. However, this approach is inadequate for contemporary end-to-end AI-generated songs where all components (vocals, lyrics, music, and style) could be AI-generated. Additionally, existing datasets lack lyrics-music diversity, long-duration songs, and open fake songs. To address these gaps, we introduce SONICS, a novel dataset for end-to-end Synthetic Song Detection (SSD), comprising over 97k songs with over 49k synthetic songs from popular platforms like Suno and Udio. Furthermore, we highlight the importance of modeling long-range temporal dependencies in songs for effective authenticity detection, an aspect overlooked in existing methods. To capture these patterns, we propose a novel model, SpecTTTra, that is up to 3 times faster and 6 times more memory efficient compared to popular CNN and Transformer-based models while maintaining competitive performance. Finally, we offer both AI-based and Human evaluation benchmarks, addressing another deficiency in current research.

  • 5 authors
·
Aug 26, 2024

From Context to Concept: Exploring Semantic Relationships in Music with Word2Vec

We explore the potential of a popular distributional semantics vector space model, word2vec, for capturing meaningful relationships in ecological (complex polyphonic) music. More precisely, the skip-gram version of word2vec is used to model slices of music from a large corpus spanning eight musical genres. In this newly learned vector space, a metric based on cosine distance is able to distinguish between functional chord relationships, as well as harmonic associations in the music. Evidence, based on cosine distance between chord-pair vectors, suggests that an implicit circle-of-fifths exists in the vector space. In addition, a comparison between pieces in different keys reveals that key relationships are represented in word2vec space. These results suggest that the newly learned embedded vector representation does in fact capture tonal and harmonic characteristics of music, without receiving explicit information about the musical content of the constituent slices. In order to investigate whether proximity in the discovered space of embeddings is indicative of `semantically-related' slices, we explore a music generation task, by automatically replacing existing slices from a given piece of music with new slices. We propose an algorithm to find substitute slices based on spatial proximity and the pitch class distribution inferred in the chosen subspace. The results indicate that the size of the subspace used has a significant effect on whether slices belonging to the same key are selected. In sum, the proposed word2vec model is able to learn music-vector embeddings that capture meaningful tonal and harmonic relationships in music, thereby providing a useful tool for exploring musical properties and comparisons across pieces, as a potential input representation for deep learning models, and as a music generation device.

  • 3 authors
·
Nov 29, 2018

Semi-Supervised Contrastive Learning for Controllable Video-to-Music Retrieval

Content creators often use music to enhance their videos, from soundtracks in movies to background music in video blogs and social media content. However, identifying the best music for a video can be a difficult and time-consuming task. To address this challenge, we propose a novel framework for automatically retrieving a matching music clip for a given video, and vice versa. Our approach leverages annotated music labels, as well as the inherent artistic correspondence between visual and music elements. Distinct from previous cross-modal music retrieval works, our method combines both self-supervised and supervised training objectives. We use self-supervised and label-supervised contrastive learning to train a joint embedding space between music and video. We show the effectiveness of our approach by using music genre labels for the supervised training component, and our framework can be generalized to other music annotations (e.g., emotion, instrument, etc.). Furthermore, our method enables fine-grained control over how much the retrieval process focuses on self-supervised vs. label information at inference time. We evaluate the learned embeddings through a variety of video-to-music and music-to-video retrieval tasks. Our experiments show that the proposed approach successfully combines self-supervised and supervised objectives and is effective for controllable music-video retrieval.

  • 4 authors
·
Dec 8, 2024

CMI-Bench: A Comprehensive Benchmark for Evaluating Music Instruction Following

Recent advances in audio-text large language models (LLMs) have opened new possibilities for music understanding and generation. However, existing benchmarks are limited in scope, often relying on simplified tasks or multi-choice evaluations that fail to reflect the complexity of real-world music analysis. We reinterpret a broad range of traditional MIR annotations as instruction-following formats and introduce CMI-Bench, a comprehensive music instruction following benchmark designed to evaluate audio-text LLMs on a diverse set of music information retrieval (MIR) tasks. These include genre classification, emotion regression, emotion tagging, instrument classification, pitch estimation, key detection, lyrics transcription, melody extraction, vocal technique recognition, instrument performance technique detection, music tagging, music captioning, and (down)beat tracking: reflecting core challenges in MIR research. Unlike previous benchmarks, CMI-Bench adopts standardized evaluation metrics consistent with previous state-of-the-art MIR models, ensuring direct comparability with supervised approaches. We provide an evaluation toolkit supporting all open-source audio-textual LLMs, including LTU, Qwen-audio, SALMONN, MusiLingo, etc. Experiment results reveal significant performance gaps between LLMs and supervised models, along with their culture, chronological and gender bias, highlighting the potential and limitations of current models in addressing MIR tasks. CMI-Bench establishes a unified foundation for evaluating music instruction following, driving progress in music-aware LLMs.

  • 5 authors
·
Jun 13, 2025 2

I can listen but cannot read: An evaluation of two-tower multimodal systems for instrument recognition

Music two-tower multimodal systems integrate audio and text modalities into a joint audio-text space, enabling direct comparison between songs and their corresponding labels. These systems enable new approaches for classification and retrieval, leveraging both modalities. Despite the promising results they have shown for zero-shot classification and retrieval tasks, closer inspection of the embeddings is needed. This paper evaluates the inherent zero-shot properties of joint audio-text spaces for the case-study of instrument recognition. We present an evaluation and analysis of two-tower systems for zero-shot instrument recognition and a detailed analysis of the properties of the pre-joint and joint embeddings spaces. Our findings suggest that audio encoders alone demonstrate good quality, while challenges remain within the text encoder or joint space projection. Specifically, two-tower systems exhibit sensitivity towards specific words, favoring generic prompts over musically informed ones. Despite the large size of textual encoders, they do not yet leverage additional textual context or infer instruments accurately from their descriptions. Lastly, a novel approach for quantifying the semantic meaningfulness of the textual space leveraging an instrument ontology is proposed. This method reveals deficiencies in the systems' understanding of instruments and provides evidence of the need for fine-tuning text encoders on musical data.

  • 3 authors
·
Jul 25, 2024