new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

Evolutionary Caching to Accelerate Your Off-the-Shelf Diffusion Model

Diffusion-based image generation models excel at producing high-quality synthetic content, but suffer from slow and computationally expensive inference. Prior work has attempted to mitigate this by caching and reusing features within diffusion transformers across inference steps. These methods, however, often rely on rigid heuristics that result in limited acceleration or poor generalization across architectures. We propose Evolutionary Caching to Accelerate Diffusion models (ECAD), a genetic algorithm that learns efficient, per-model, caching schedules forming a Pareto frontier, using only a small set of calibration prompts. ECAD requires no modifications to network parameters or reference images. It offers significant inference speedups, enables fine-grained control over the quality-latency trade-off, and adapts seamlessly to different diffusion models. Notably, ECAD's learned schedules can generalize effectively to resolutions and model variants not seen during calibration. We evaluate ECAD on PixArt-alpha, PixArt-Sigma, and FLUX-1.dev using multiple metrics (FID, CLIP, Image Reward) across diverse benchmarks (COCO, MJHQ-30k, PartiPrompts), demonstrating consistent improvements over previous approaches. On PixArt-alpha, ECAD identifies a schedule that outperforms the previous state-of-the-art method by 4.47 COCO FID while increasing inference speedup from 2.35x to 2.58x. Our results establish ECAD as a scalable and generalizable approach for accelerating diffusion inference. Our project website is available at https://aniaggarwal.github.io/ecad and our code is available at https://github.com/aniaggarwal/ecad.

  • 3 authors
·
Jun 18, 2025 2

Nemotron-Flash: Towards Latency-Optimal Hybrid Small Language Models

Efficient deployment of small language models (SLMs) is essential for numerous real-world applications with stringent latency constraints. While previous work on SLM design has primarily focused on reducing the number of parameters to achieve parameter-optimal SLMs, parameter efficiency does not necessarily translate into proportional real-device speed-ups. This work aims to identify the key determinants of SLMs' real-device latency and offer generalizable principles and methodologies for SLM design and training when real-device latency is the primary consideration. Specifically, we identify two central architectural factors: depth-width ratios and operator choices. The former is crucial for small-batch-size latency, while the latter affects both latency and large-batch-size throughput. In light of this, we first study latency-optimal depth-width ratios, with the key finding that although deep-thin models generally achieve better accuracy under the same parameter budget, they may not lie on the accuracy-latency trade-off frontier. Next, we explore emerging efficient attention alternatives to evaluate their potential as candidate building operators. Using the identified promising operators, we construct an evolutionary search framework to automatically discover latency-optimal combinations of these operators within hybrid SLMs, thereby advancing the accuracy-latency frontier. In addition to architectural improvements, we further enhance SLM training using a weight normalization technique that enables more effective weight updates and improves final convergence. Combining these methods, we introduce a new family of hybrid SLMs, called Nemotron-Flash, which significantly advances the accuracy-efficiency frontier of state-of-the-art SLMs, e.g., achieving over +5.5% average accuracy, 1.3x/1.9x lower latency, and 18.7x/45.6x higher throughput compared to Qwen3-1.7B/0.6B, respectively.

nvidia NVIDIA
·
Nov 24, 2025 2

EfficientLLM: Efficiency in Large Language Models

Large Language Models (LLMs) have driven significant progress, yet their growing parameter counts and context windows incur prohibitive compute, energy, and monetary costs. We introduce EfficientLLM, a novel benchmark and the first comprehensive empirical study evaluating efficiency techniques for LLMs at scale. Conducted on a production-class cluster (48xGH200, 8xH200 GPUs), our study systematically explores three key axes: (1) architecture pretraining (efficient attention variants: MQA, GQA, MLA, NSA; sparse Mixture-of-Experts (MoE)), (2) fine-tuning (parameter-efficient methods: LoRA, RSLoRA, DoRA), and (3) inference (quantization methods: int4, float16). We define six fine-grained metrics (Memory Utilization, Compute Utilization, Latency, Throughput, Energy Consumption, Compression Rate) to capture hardware saturation, latency-throughput balance, and carbon cost. Evaluating over 100 model-technique pairs (0.5B-72B parameters), we derive three core insights: (i) Efficiency involves quantifiable trade-offs: no single method is universally optimal; e.g., MoE reduces FLOPs and improves accuracy but increases VRAM by 40%, while int4 quantization cuts memory/energy by up to 3.9x at a 3-5% accuracy drop. (ii) Optima are task- and scale-dependent: MQA offers optimal memory-latency trade-offs for constrained devices, MLA achieves lowest perplexity for quality-critical tasks, and RSLoRA surpasses LoRA efficiency only beyond 14B parameters. (iii) Techniques generalize across modalities: we extend evaluations to Large Vision Models (Stable Diffusion 3.5, Wan 2.1) and Vision-Language Models (Qwen2.5-VL), confirming effective transferability. By open-sourcing datasets, evaluation pipelines, and leaderboards, EfficientLLM provides essential guidance for researchers and engineers navigating the efficiency-performance landscape of next-generation foundation models.

  • 16 authors
·
May 19, 2025 1

Token Sparse Attention: Efficient Long-Context Inference with Interleaved Token Selection

The quadratic complexity of attention remains the central bottleneck in long-context inference for large language models. Prior acceleration methods either sparsify the attention map with structured patterns or permanently evict tokens at specific layers, which can retain irrelevant tokens or rely on irreversible early decisions despite the layer-/head-wise dynamics of token importance. In this paper, we propose Token Sparse Attention, a lightweight and dynamic token-level sparsification mechanism that compresses per-head Q, K, V to a reduced token set during attention and then decompresses the output back to the original sequence, enabling token information to be reconsidered in subsequent layers. Furthermore, Token Sparse Attention exposes a new design point at the intersection of token selection and sparse attention. Our approach is fully compatible with dense attention implementations, including Flash Attention, and can be seamlessly composed with existing sparse attention kernels. Experimental results show that Token Sparse Attention consistently improves accuracy-latency trade-off, achieving up to times3.23 attention speedup at 128K context with less than 1% accuracy degradation. These results demonstrate that dynamic and interleaved token-level sparsification is a complementary and effective strategy for scalable long-context inference.

An Extendable, Efficient and Effective Transformer-based Object Detector

Transformers have been widely used in numerous vision problems especially for visual recognition and detection. Detection transformers are the first fully end-to-end learning systems for object detection, while vision transformers are the first fully transformer-based architecture for image classification. In this paper, we integrate Vision and Detection Transformers (ViDT) to construct an effective and efficient object detector. ViDT introduces a reconfigured attention module to extend the recent Swin Transformer to be a standalone object detector, followed by a computationally efficient transformer decoder that exploits multi-scale features and auxiliary techniques essential to boost the detection performance without much increase in computational load. In addition, we extend it to ViDT+ to support joint-task learning for object detection and instance segmentation. Specifically, we attach an efficient multi-scale feature fusion layer and utilize two more auxiliary training losses, IoU-aware loss and token labeling loss. Extensive evaluation results on the Microsoft COCO benchmark dataset demonstrate that ViDT obtains the best AP and latency trade-off among existing fully transformer-based object detectors, and its extended ViDT+ achieves 53.2AP owing to its high scalability for large models. The source code and trained models are available at https://github.com/naver-ai/vidt.

  • 8 authors
·
Apr 17, 2022

Reveal Hidden Pitfalls and Navigate Next Generation of Vector Similarity Search from Task-Centric Views

Vector Similarity Search (VSS) in high-dimensional spaces is rapidly emerging as core functionality in next-generation database systems for numerous data-intensive services -- from embedding lookups in large language models (LLMs), to semantic information retrieval and recommendation engines. Current benchmarks, however, evaluate VSS primarily on the recall-latency trade-off against a ground truth defined solely by distance metrics, neglecting how retrieval quality ultimately impacts downstream tasks. This disconnect can mislead both academic research and industrial practice. We present Iceberg, a holistic benchmark suite for end-to-end evaluation of VSS methods in realistic application contexts. From a task-centric view, Iceberg uncovers the Information Loss Funnel, which identifies three principal sources of end-to-end performance degradation: (1) Embedding Loss during feature extraction; (2) Metric Misuse, where distances poorly reflect task relevance; (3) Data Distribution Sensitivity, highlighting index robustness across skews and modalities. For a more comprehensive assessment, Iceberg spans eight diverse datasets across key domains such as image classification, face recognition, text retrieval, and recommendation systems. Each dataset, ranging from 1M to 100M vectors, includes rich, task-specific labels and evaluation metrics, enabling assessment of retrieval algorithms within the full application pipeline rather than in isolation. Iceberg benchmarks 13 state-of-the-art VSS methods and re-ranks them based on application-level metrics, revealing substantial deviations from traditional rankings derived purely from recall-latency evaluations. Building on these insights, we define a set of task-centric meta-features and derive an interpretable decision tree to guide practitioners in selecting and tuning VSS methods for their specific workloads.

  • 9 authors
·
Dec 14, 2025 1

Beyond Training: Enabling Self-Evolution of Agents with MOBIMEM

Large Language Model (LLM) agents are increasingly deployed to automate complex workflows in mobile and desktop environments. However, current model-centric agent architectures struggle to self-evolve post-deployment: improving personalization, capability, and efficiency typically requires continuous model retraining/fine-tuning, which incurs prohibitive computational overheads and suffers from an inherent trade-off between model accuracy and inference efficiency. To enable iterative self-evolution without model retraining, we propose MOBIMEM, a memory-centric agent system. MOBIMEM first introduces three specialized memory primitives to decouple agent evolution from model weights: (1) Profile Memory uses a lightweight distance-graph (DisGraph) structure to align with user preferences, resolving the accuracy-latency trade-off in user profile retrieval; (2) Experience Memory employs multi-level templates to instantiate execution logic for new tasks, ensuring capability generalization; and (3) Action Memory records fine-grained interaction sequences, reducing the reliance on expensive model inference. Building upon this memory architecture, MOBIMEM further integrates a suite of OS-inspired services to orchestrate execution: a scheduler that coordinates parallel sub-task execution and memory operations; an agent record-and-replay (AgentRR) mechanism that enables safe and efficient action reuse; and a context-aware exception handling that ensures graceful recovery from user interruptions and runtime errors. Evaluation on AndroidWorld and top-50 apps shows that MOBIMEM achieves 83.1% profile alignment with 23.83 ms retrieval time (280x faster than GraphRAG baselines), improves task success rates by up to 50.3%, and reduces end-to-end latency by up to 9x on mobile devices.

  • 9 authors
·
Dec 15, 2025

MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression

Sparse attention can effectively mitigate the significant memory and throughput demands of Large Language Models (LLMs) in long contexts. Existing methods typically employ a uniform sparse attention mask, applying the same sparse pattern across different attention heads and input lengths. However, this uniform approach fails to capture the diverse attention patterns inherent in LLMs, ignoring their distinct accuracy-latency trade-offs. To address this challenge, we propose the Mixture of Attention (MoA), which automatically tailors distinct sparse attention configurations to different heads and layers. MoA constructs and navigates a search space of various attention patterns and their scaling rules relative to input sequence lengths. It profiles the model, evaluates potential configurations, and pinpoints the optimal sparse attention compression plan. MoA adapts to varying input sizes, revealing that some attention heads expand their focus to accommodate longer sequences, while other heads consistently concentrate on fixed-length local contexts. Experiments show that MoA increases the effective context length by 3.9times with the same average attention span, boosting retrieval accuracy by 1.5-7.1times over the uniform-attention baseline across Vicuna-7B, Vicuna-13B, and Llama3-8B models. Moreover, MoA narrows the capability gaps between sparse and dense models, reducing the maximum relative performance drop from 9%-36% to within 5% across two long-context understanding benchmarks. MoA achieves a 1.2-1.4times GPU memory reduction and boosts decode throughput by 5.5-6.7 times for 7B and 13B dense models on a single GPU, with minimal impact on performance.

  • 13 authors
·
Jun 21, 2024 4

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Deep Neural Networks (DNNs) have been a large driver and enabler for AI breakthroughs in recent years. These models have been getting larger in their attempt to become more accurate and tackle new upcoming use-cases, including AR/VR and intelligent assistants. However, the training process of such large models is a costly and time-consuming process, which typically yields a single model to fit all targets. To mitigate this, various techniques have been proposed in the literature, including pruning, sparsification or quantization of the model weights and updates. While able to achieve high compression rates, they often incur computational overheads or accuracy penalties. Alternatively, factorization methods have been leveraged to incorporate low-rank compression in the training process. Similarly, such techniques (e.g.,~SVD) frequently rely on the computationally expensive decomposition of layers and are potentially sub-optimal for non-linear models, such as DNNs. In this work, we take a further step in designing efficient low-rank models and propose Maestro, a framework for trainable low-rank layers. Instead of regularly applying a priori decompositions such as SVD, the low-rank structure is built into the training process through a generalized variant of Ordered Dropout. This method imposes an importance ordering via sampling on the decomposed DNN structure. Our theoretical analysis demonstrates that our method recovers the SVD decomposition of linear mapping on uniformly distributed data and PCA for linear autoencoders. We further apply our technique on DNNs and empirically illustrate that Maestro enables the extraction of lower footprint models that preserve model performance while allowing for graceful accuracy-latency tradeoff for the deployment to devices of different capabilities.

  • 4 authors
·
Aug 28, 2023

MobileDets: Searching for Object Detection Architectures for Mobile Accelerators

Inverted bottleneck layers, which are built upon depthwise convolutions, have been the predominant building blocks in state-of-the-art object detection models on mobile devices. In this work, we investigate the optimality of this design pattern over a broad range of mobile accelerators by revisiting the usefulness of regular convolutions. We discover that regular convolutions are a potent component to boost the latency-accuracy trade-off for object detection on accelerators, provided that they are placed strategically in the network via neural architecture search. By incorporating regular convolutions in the search space and directly optimizing the network architectures for object detection, we obtain a family of object detection models, MobileDets, that achieve state-of-the-art results across mobile accelerators. On the COCO object detection task, MobileDets outperform MobileNetV3+SSDLite by 1.7 mAP at comparable mobile CPU inference latencies. MobileDets also outperform MobileNetV2+SSDLite by 1.9 mAP on mobile CPUs, 3.7 mAP on Google EdgeTPU, 3.4 mAP on Qualcomm Hexagon DSP and 2.7 mAP on Nvidia Jetson GPU without increasing latency. Moreover, MobileDets are comparable with the state-of-the-art MnasFPN on mobile CPUs even without using the feature pyramid, and achieve better mAP scores on both EdgeTPUs and DSPs with up to 2x speedup. Code and models are available in the TensorFlow Object Detection API: https://github.com/tensorflow/models/tree/master/research/object_detection.

  • 10 authors
·
Apr 29, 2020

Qwen3-VL Technical Report

We introduce Qwen3-VL, the most capable vision-language model in the Qwen series to date, achieving superior performance across a broad range of multimodal benchmarks. It natively supports interleaved contexts of up to 256K tokens, seamlessly integrating text, images, and video. The model family includes both dense (2B/4B/8B/32B) and mixture-of-experts (30B-A3B/235B-A22B) variants to accommodate diverse latency-quality trade-offs. Qwen3-VL delivers three core pillars: (i) markedly stronger pure-text understanding, surpassing comparable text-only backbones in several cases; (ii) robust long-context comprehension with a native 256K-token window for both text and interleaved multimodal inputs, enabling faithful retention, retrieval, and cross-referencing across long documents and videos; and (iii) advanced multimodal reasoning across single-image, multi-image, and video tasks, demonstrating leading performance on comprehensive evaluations such as MMMU and visual-math benchmarks (e.g., MathVista and MathVision). Architecturally, we introduce three key upgrades: (i) an enhanced interleaved-MRoPE for stronger spatial-temporal modeling across images and video; (ii) DeepStack integration, which effectively leverages multi-level ViT features to tighten vision-language alignment; and (iii) text-based time alignment for video, evolving from T-RoPE to explicit textual timestamp alignment for more precise temporal grounding. Under comparable token budgets and latency constraints, Qwen3-VL achieves superior performance in both dense and Mixture-of-Experts (MoE) architectures. We envision Qwen3-VL serving as a foundational engine for image-grounded reasoning, agentic decision-making, and multimodal code intelligence in real-world workflows.

Qwen Qwen
·
Nov 26, 2025 4

Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios

Due to the complex attention mechanisms and model design, most existing vision Transformers (ViTs) can not perform as efficiently as convolutional neural networks (CNNs) in realistic industrial deployment scenarios, e.g. TensorRT and CoreML. This poses a distinct challenge: Can a visual neural network be designed to infer as fast as CNNs and perform as powerful as ViTs? Recent works have tried to design CNN-Transformer hybrid architectures to address this issue, yet the overall performance of these works is far away from satisfactory. To end these, we propose a next generation vision Transformer for efficient deployment in realistic industrial scenarios, namely Next-ViT, which dominates both CNNs and ViTs from the perspective of latency/accuracy trade-off. In this work, the Next Convolution Block (NCB) and Next Transformer Block (NTB) are respectively developed to capture local and global information with deployment-friendly mechanisms. Then, Next Hybrid Strategy (NHS) is designed to stack NCB and NTB in an efficient hybrid paradigm, which boosts performance in various downstream tasks. Extensive experiments show that Next-ViT significantly outperforms existing CNNs, ViTs and CNN-Transformer hybrid architectures with respect to the latency/accuracy trade-off across various vision tasks. On TensorRT, Next-ViT surpasses ResNet by 5.5 mAP (from 40.4 to 45.9) on COCO detection and 7.7% mIoU (from 38.8% to 46.5%) on ADE20K segmentation under similar latency. Meanwhile, it achieves comparable performance with CSWin, while the inference speed is accelerated by 3.6x. On CoreML, Next-ViT surpasses EfficientFormer by 4.6 mAP (from 42.6 to 47.2) on COCO detection and 3.5% mIoU (from 45.1% to 48.6%) on ADE20K segmentation under similar latency. Our code and models are made public at: https://github.com/bytedance/Next-ViT

  • 9 authors
·
Jul 12, 2022

FMViT: A multiple-frequency mixing Vision Transformer

The transformer model has gained widespread adoption in computer vision tasks in recent times. However, due to the quadratic time and memory complexity of self-attention, which is proportional to the number of input tokens, most existing Vision Transformers (ViTs) encounter challenges in achieving efficient performance in practical industrial deployment scenarios, such as TensorRT and CoreML, where traditional CNNs excel. Although some recent attempts have been made to design CNN-Transformer hybrid architectures to tackle this problem, their overall performance has not met expectations. To tackle these challenges, we propose an efficient hybrid ViT architecture named FMViT. This approach enhances the model's expressive power by blending high-frequency features and low-frequency features with varying frequencies, enabling it to capture both local and global information effectively. Additionally, we introduce deploy-friendly mechanisms such as Convolutional Multigroup Reparameterization (gMLP), Lightweight Multi-head Self-Attention (RLMHSA), and Convolutional Fusion Block (CFB) to further improve the model's performance and reduce computational overhead. Our experiments demonstrate that FMViT surpasses existing CNNs, ViTs, and CNNTransformer hybrid architectures in terms of latency/accuracy trade-offs for various vision tasks. On the TensorRT platform, FMViT outperforms Resnet101 by 2.5% (83.3% vs. 80.8%) in top-1 accuracy on the ImageNet dataset while maintaining similar inference latency. Moreover, FMViT achieves comparable performance with EfficientNet-B5, but with a 43% improvement in inference speed. On CoreML, FMViT outperforms MobileOne by 2.6% in top-1 accuracy on the ImageNet dataset, with inference latency comparable to MobileOne (78.5% vs. 75.9%). Our code can be found at https://github.com/tany0699/FMViT.

  • 3 authors
·
Nov 9, 2023 1

AI Agent Systems: Architectures, Applications, and Evaluation

AI agents -- systems that combine foundation models with reasoning, planning, memory, and tool use -- are rapidly becoming a practical interface between natural-language intent and real-world computation. This survey synthesizes the emerging landscape of AI agent architectures across: (i) deliberation and reasoning (e.g., chain-of-thought-style decomposition, self-reflection and verification, and constraint-aware decision making), (ii) planning and control (from reactive policies to hierarchical and multi-step planners), and (iii) tool calling and environment interaction (retrieval, code execution, APIs, and multimodal perception). We organize prior work into a unified taxonomy spanning agent components (policy/LLM core, memory, world models, planners, tool routers, and critics), orchestration patterns (single-agent vs.\ multi-agent; centralized vs.\ decentralized coordination), and deployment settings (offline analysis vs.\ online interactive assistance; safety-critical vs.\ open-ended tasks). We discuss key design trade-offs -- latency vs.\ accuracy, autonomy vs.\ controllability, and capability vs.\ reliability -- and highlight how evaluation is complicated by non-determinism, long-horizon credit assignment, tool and environment variability, and hidden costs such as retries and context growth. Finally, we summarize measurement and benchmarking practices (task suites, human preference and utility metrics, success under constraints, robustness and security) and identify open challenges including verification and guardrails for tool actions, scalable memory and context management, interpretability of agent decisions, and reproducible evaluation under realistic workloads.

  • 1 authors
·
Jan 4

AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation

Neural network architecture design requires making many crucial decisions. The common desiderata is that similar decisions, with little modifications, can be reused in a variety of tasks and applications. To satisfy that, architectures must provide promising latency and performance trade-offs, support a variety of tasks, scale efficiently with respect to the amounts of data and compute, leverage available data from other tasks, and efficiently support various hardware. To this end, we introduce AsCAN -- a hybrid architecture, combining both convolutional and transformer blocks. We revisit the key design principles of hybrid architectures and propose a simple and effective asymmetric architecture, where the distribution of convolutional and transformer blocks is asymmetric, containing more convolutional blocks in the earlier stages, followed by more transformer blocks in later stages. AsCAN supports a variety of tasks: recognition, segmentation, class-conditional image generation, and features a superior trade-off between performance and latency. We then scale the same architecture to solve a large-scale text-to-image task and show state-of-the-art performance compared to the most recent public and commercial models. Notably, even without any computation optimization for transformer blocks, our models still yield faster inference speed than existing works featuring efficient attention mechanisms, highlighting the advantages and the value of our approach.

  • 8 authors
·
Nov 7, 2024

Performance Trade-offs of Optimizing Small Language Models for E-Commerce

Large Language Models (LLMs) offer state-of-the-art performance in natural language understanding and generation tasks. However, the deployment of leading commercial models for specialized tasks, such as e-commerce, is often hindered by high computational costs, latency, and operational expenses. This paper investigates the viability of smaller, open-weight models as a resource-efficient alternative. We present a methodology for optimizing a one-billion-parameter Llama 3.2 model for multilingual e-commerce intent recognition. The model was fine-tuned using Quantized Low-Rank Adaptation (QLoRA) on a synthetically generated dataset designed to mimic real-world user queries. Subsequently, we applied post-training quantization techniques, creating GPU-optimized (GPTQ) and CPU-optimized (GGUF) versions. Our results demonstrate that the specialized 1B model achieves 99% accuracy, matching the performance of the significantly larger GPT-4.1 model. A detailed performance analysis revealed critical, hardware-dependent trade-offs: while 4-bit GPTQ reduced VRAM usage by 41%, it paradoxically slowed inference by 82% on an older GPU architecture (NVIDIA T4) due to dequantization overhead. Conversely, GGUF formats on a CPU achieved a speedup of up to 18x in inference throughput and a reduction of over 90% in RAM consumption compared to the FP16 baseline. We conclude that small, properly optimized open-weight models are not just a viable but a more suitable alternative for domain-specific applications, offering state-of-the-art accuracy at a fraction of the computational cost.

  • 2 authors
·
Oct 24, 2025 2

Fragile Mastery: Are Domain-Specific Trade-Offs Undermining On-Device Language Models?

The application of on-device language models (ODLMs) on resource-constrained edge devices is a multi-dimensional problem that strikes a fine balance between computational effectiveness, memory, power usage, and linguistic capacity across heterogeneous tasks. This holistic study conducts a thorough investigation of the trade-offs between domain-specific optimization and cross-domain robustness, culminating in the proposal of the Generalized Edge Model (GEM), a new architecture that aims to balance specialization and generalization in a harmonious manner. With a rigorous experimental approach testing 47 well-chosen benchmarks in eight domains--healthcare, law, finance, STEM, commonsense, conversational AI, multilingual, and domain-adaptive tasks--we show that conventional optimization techniques decrease target task perplexity by 18-25% but result in a precipitous decline in general-task performance with F1 scores decreasing by 12-29%, as reported by Liu et al. GEM employs a Sparse Cross-Attention Router (SCAR) to dynamically allocate computation to a variable number of computing resources with a cross-domain F1 accuracy of 0.89 on less than 100ms latency across Raspberry Pi 4, Pixel 6, iPhone 13, and bespoke custom neural processing units (NPUs). Compared to GPT-4 Lite, GEM enhances the general-task level by 7% with respect and parity in domain-specific performance. We propose three new measurement tools--Domain Specialization Index (DSI), Generalization Gap (GG), and Cross-Domain Transfer Ratio (CDTR)--which show strong correlation between model compression intensity and brittleness.

  • 2 authors
·
Mar 16, 2025

Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt

While the numerous parameters in Large Language Models (LLMs) contribute to their superior performance, this massive scale makes them inefficient and memory-hungry. Thus, they are hard to deploy on commodity hardware, such as one single GPU. Given the memory and power constraints of such devices, model compression methods are widely employed to reduce both the model size and inference latency, which essentially trades off model quality in return for improved efficiency. Thus, optimizing this accuracy-efficiency trade-off is crucial for the LLM deployment on commodity hardware. In this paper, we introduce a new perspective to optimize this trade-off by prompting compressed models. Specifically, we first observe that for certain questions, the generation quality of a compressed LLM can be significantly improved by adding carefully designed hard prompts, though this isn't the case for all questions. Based on this observation, we propose a soft prompt learning method where we expose the compressed model to the prompt learning process, aiming to enhance the performance of prompts. Our experimental analysis suggests our soft prompt strategy greatly improves the performance of the 8x compressed LLaMA-7B model (with a joint 4-bit quantization and 50% weight pruning compression), allowing them to match their uncompressed counterparts on popular benchmarks. Also, we demonstrate that these learned prompts can be transferred across various datasets, tasks, and compression levels. Hence with this transferability, we can stitch the soft prompt to a newly compressed model to improve the test-time accuracy in an ``in-situ'' way.

  • 8 authors
·
May 17, 2023

Small Language Models for Agentic Systems: A Survey of Architectures, Capabilities, and Deployment Trade offs

Small language models (SLMs; 1-12B params, sometimes up to 20B) are sufficient and often superior for agentic workloads where the objective is schema- and API-constrained accuracy rather than open-ended generation. We synthesize recent evidence across open and proprietary SLMs (Phi-4-Mini, Qwen-2.5-7B, Gemma-2-9B, Llama-3.2-1B/3B, Ministral-3B/8B, Apple on-device 3B, DeepSeek-R1-Distill) and connect it to modern evaluations (BFCL v3/v4, StableToolBench) and serving stacks (vLLM, SGLang, TensorRT-LLM) paired with guided decoding libraries (XGrammar, Outlines). We formalize SLM-default, LLM-fallback systems with uncertainty-aware routing and verifier cascades, and propose engineering metrics that reflect real production goals: cost per successful task (CPS), schema validity rate, executable call rate, p50/p95 latency, and energy per request. Guided decoding, strict JSON Schema outputs, and validator-first tool execution close much of the capability gap with larger models and often let SLMs match or surpass LLMs on tool use, function calling, and RAG at 10x-100x lower token cost with materially better latency and energy. We provide design patterns for agent stacks that prioritize SLMs: schema-first prompting, type-safe function registries, confidence scoring with verifier rollups, and lightweight adaptation via LoRA/QLoRA. We also delineate limits where fallback remains valuable (open-domain reasoning and some long-horizon planning). The result is a practical blueprint for building fast, inexpensive, and reliable agents that default to SLMs while preserving headroom with targeted LLM assistance. Keywords: small language models, agents, function calling, structured outputs, JSON Schema, guided decoding, LoRA/QLoRA, routing, energy efficiency, edge inference

  • 2 authors
·
Oct 4, 2025

One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings

Deploying language models often requires handling model size vs. performance trade-offs to satisfy downstream latency constraints while preserving the model's usefulness. Model distillation is commonly employed to reduce model size while maintaining acceptable performance. However, distillation can be inefficient since it involves multiple training steps. In this work, we introduce MODULARSTARENCODER, a modular multi-exit encoder with 1B parameters, useful for multiple tasks within the scope of code retrieval. MODULARSTARENCODER is trained with a novel self-distillation mechanism that significantly improves lower-layer representations-allowing different portions of the model to be used while still maintaining a good trade-off in terms of performance. Our architecture focuses on enhancing text-to-code and code-to-code search by systematically capturing syntactic and semantic structures across multiple levels of representation. Specific encoder layers are targeted as exit heads, allowing higher layers to guide earlier layers during training. This self-distillation effect improves intermediate representations, increasing retrieval recall at no extra training cost. In addition to the multi-exit scheme, our approach integrates a repository-level contextual loss that maximally utilizes the training context window, further enhancing the learned representations. We also release a new dataset constructed via code translation, seamlessly expanding traditional text-to-code benchmarks with code-to-code pairs across diverse programming languages. Experimental results highlight the benefits of self-distillation through multi-exit supervision.

  • 4 authors
·
Mar 4, 2025

Lookahead When It Matters: Adaptive Non-causal Transformers for Streaming Neural Transducers

Streaming speech recognition architectures are employed for low-latency, real-time applications. Such architectures are often characterized by their causality. Causal architectures emit tokens at each frame, relying only on current and past signal, while non-causal models are exposed to a window of future frames at each step to increase predictive accuracy. This dichotomy amounts to a trade-off for real-time Automatic Speech Recognition (ASR) system design: profit from the low-latency benefit of strictly-causal architectures while accepting predictive performance limitations, or realize the modeling benefits of future-context models accompanied by their higher latency penalty. In this work, we relax the constraints of this choice and present the Adaptive Non-Causal Attention Transducer (ANCAT). Our architecture is non-causal in the traditional sense, but executes in a low-latency, streaming manner by dynamically choosing when to rely on future context and to what degree within the audio stream. The resulting mechanism, when coupled with our novel regularization algorithms, delivers comparable accuracy to non-causal configurations while improving significantly upon latency, closing the gap with their causal counterparts. We showcase our design experimentally by reporting comparative ASR task results with measures of accuracy and latency on both publicly accessible and production-scale, voice-assistant datasets.

  • 6 authors
·
May 6, 2023

IC-Cache: Efficient Large Language Model Serving via In-context Caching

Large language models (LLMs) have excelled in various applications, yet serving them at scale is challenging due to their substantial resource demands and high latency. Our real-world studies reveal that over 70% of user requests to LLMs have semantically similar counterparts, suggesting the potential for knowledge transfer among requests. However, naively caching and reusing past responses leads to a big quality drop. In this paper, we introduce IC-Cache, a caching system that enables live LLM capability augmentation to improve serving efficiency: by leveraging historical request-response pairs from larger models as in-context examples, IC-Cache empowers small LLMs to imitate and even exceed the compositional abilities (e.g., reasoning) of their larger counterparts, enabling selective offloading of requests to reduce cost and latency. Achieving this live augmentation at scale introduces intricate trade-offs between response quality, latency, and system throughput. For a new request, IC-Cache efficiently selects similar, high-utility examples to prepend them to the new request's input. At scale, it adaptively routes requests across LLMs of varying capabilities, accounting for response quality and serving loads. IC-Cache employs a cost-aware cache replay mechanism that refines example quality offline to maximize online cache utility and efficiency. Evaluations on millions of realistic requests demonstrate that IC-Cache improves LLM serving throughput by 1.4-5.9x and reduces latency by 28-71% without hurting response quality.

  • 10 authors
·
Jan 22, 2025

If You Want Coherence, Orchestrate a Team of Rivals: Multi-Agent Models of Organizational Intelligence

AI Agents can perform complex operations at great speed, but just like all the humans we have ever hired, their intelligence remains fallible. Miscommunications aren't noticed, systemic biases have no counter-action, and inner monologues are rarely written down. We did not come to fire them for their mistakes, but to hire them and provide a safe productive working environment. We posit that we can reuse a common corporate organizational structure: teams of independent AI agents with strict role boundaries can work with common goals, but opposing incentives. Multiple models serving as a team of rivals can catch and minimize errors within the final product at a small cost to the velocity of actions. In this paper we demonstrate that we can achieve reliability without acquiring perfect components, but through careful orchestration of imperfect ones. This paper describes the architecture of such a system in practice: specialized agent teams (planners, executors, critics, experts), organized into an organization with clear goals, coordinated through a remote code executor that keeps data transformations and tool invocations separate from reasoning models. Rather than agents directly calling tools and ingesting full responses, they write code that executes remotely; only relevant summaries return to agent context. By preventing raw data and tool outputs from contaminating context windows, the system maintains clean separation between perception (brains that plan and reason) and execution (hands that perform heavy data transformations and API calls). We demonstrate the approach achieves over 90% internal error interception prior to user exposure while maintaining acceptable latency tradeoffs. A survey from our traces shows that we only trade off cost and latency to achieve correctness and incrementally expand capabilities without impacting existing ones.

  • 5 authors
·
Jan 20

Unleashing the Potential of Spiking Neural Networks by Dynamic Confidence

This paper presents a new methodology to alleviate the fundamental trade-off between accuracy and latency in spiking neural networks (SNNs). The approach involves decoding confidence information over time from the SNN outputs and using it to develop a decision-making agent that can dynamically determine when to terminate each inference. The proposed method, Dynamic Confidence, provides several significant benefits to SNNs. 1. It can effectively optimize latency dynamically at runtime, setting it apart from many existing low-latency SNN algorithms. Our experiments on CIFAR-10 and ImageNet datasets have demonstrated an average 40% speedup across eight different settings after applying Dynamic Confidence. 2. The decision-making agent in Dynamic Confidence is straightforward to construct and highly robust in parameter space, making it extremely easy to implement. 3. The proposed method enables visualizing the potential of any given SNN, which sets a target for current SNNs to approach. For instance, if an SNN can terminate at the most appropriate time point for each input sample, a ResNet-50 SNN can achieve an accuracy as high as 82.47% on ImageNet within just 4.71 time steps on average. Unlocking the potential of SNNs needs a highly-reliable decision-making agent to be constructed and fed with a high-quality estimation of ground truth. In this regard, Dynamic Confidence represents a meaningful step toward realizing the potential of SNNs.

  • 3 authors
·
Mar 17, 2023

Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation

Retrieval and ranking models are the backbone of many applications such as web search, open domain QA, or text-based recommender systems. The latency of neural ranking models at query time is largely dependent on the architecture and deliberate choices by their designers to trade-off effectiveness for higher efficiency. This focus on low query latency of a rising number of efficient ranking architectures make them feasible for production deployment. In machine learning an increasingly common approach to close the effectiveness gap of more efficient models is to apply knowledge distillation from a large teacher model to a smaller student model. We find that different ranking architectures tend to produce output scores in different magnitudes. Based on this finding, we propose a cross-architecture training procedure with a margin focused loss (Margin-MSE), that adapts knowledge distillation to the varying score output distributions of different BERT and non-BERT passage ranking architectures. We apply the teachable information as additional fine-grained labels to existing training triples of the MSMARCO-Passage collection. We evaluate our procedure of distilling knowledge from state-of-the-art concatenated BERT models to four different efficient architectures (TK, ColBERT, PreTT, and a BERT CLS dot product model). We show that across our evaluated architectures our Margin-MSE knowledge distillation significantly improves re-ranking effectiveness without compromising their efficiency. Additionally, we show our general distillation method to improve nearest neighbor based index retrieval with the BERT dot product model, offering competitive results with specialized and much more costly training methods. To benefit the community, we publish the teacher-score training files in a ready-to-use package.

  • 5 authors
·
Oct 6, 2020

MnasNet: Platform-Aware Neural Architecture Search for Mobile

Designing convolutional neural networks (CNN) for mobile devices is challenging because mobile models need to be small and fast, yet still accurate. Although significant efforts have been dedicated to design and improve mobile CNNs on all dimensions, it is very difficult to manually balance these trade-offs when there are so many architectural possibilities to consider. In this paper, we propose an automated mobile neural architecture search (MNAS) approach, which explicitly incorporate model latency into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. Unlike previous work, where latency is considered via another, often inaccurate proxy (e.g., FLOPS), our approach directly measures real-world inference latency by executing the model on mobile phones. To further strike the right balance between flexibility and search space size, we propose a novel factorized hierarchical search space that encourages layer diversity throughout the network. Experimental results show that our approach consistently outperforms state-of-the-art mobile CNN models across multiple vision tasks. On the ImageNet classification task, our MnasNet achieves 75.2% top-1 accuracy with 78ms latency on a Pixel phone, which is 1.8x faster than MobileNetV2 [29] with 0.5% higher accuracy and 2.3x faster than NASNet [36] with 1.2% higher accuracy. Our MnasNet also achieves better mAP quality than MobileNets for COCO object detection. Code is at https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet

  • 7 authors
·
Jul 30, 2018

ProxyGPT: Enabling Anonymous Queries in AI Chatbots with (Un)Trustworthy Browser Proxies

AI-powered chatbots (ChatGPT, Claude, etc.) require users to create an account using their email and phone number, thereby linking their personally identifiable information to their conversational data and usage patterns. As these chatbots are increasingly being used for tasks involving sensitive information, privacy concerns have been raised about how chatbot providers handle user data. To address these concerns, we present ProxyGPT, a privacy-enhancing system that enables anonymous queries in popular chatbot platforms. ProxyGPT leverages volunteer proxies to submit user queries on their behalf, thus providing network-level anonymity for chatbot users. The system is designed to support key security properties such as content integrity via TLS-backed data provenance, end-to-end encryption, and anonymous payment, while also ensuring usability and sustainability. We provide a thorough analysis of the privacy, security, and integrity of our system and identify various future research directions, particularly in the area of private chatbot query synthesis. Our human evaluation shows that ProxyGPT offers users a greater sense of privacy compared to traditional AI chatbots, especially in scenarios where users are hesitant to share their identity with chatbot providers. Although our proof-of-concept has higher latency than popular chatbots, our human interview participants consider this to be an acceptable trade-off for anonymity. To the best of our knowledge, ProxyGPT is the first comprehensive proxy-based solution for privacy-preserving AI chatbots. Our codebase is available at https://github.com/dzungvpham/proxygpt.

  • 4 authors
·
Jul 11, 2024

Fragile Knowledge, Robust Instruction-Following: The Width Pruning Dichotomy in Llama-3.2

Structured width pruning of GLU-MLP layers, guided by the Maximum Absolute Weight (MAW) criterion, reveals a systematic dichotomy in how reducing the expansion ratio affects different model capabilities. While performance on tasks relying on parametric knowledge (e.g., MMLU, GSM8K) and perplexity metrics degrades predictably, instruction-following capabilities improve substantially (+46% to +75% in IFEval for Llama-3.2-1B and 3B models), and multi-step reasoning remains robust (MUSR). This pattern challenges the prevailing assumption that pruning induces uniform degradation. We evaluated seven expansion ratio configurations using comprehensive benchmarks assessing factual knowledge, mathematical reasoning, language comprehension, instruction-following, and truthfulness. Our analysis identifies the expansion ratio as a critical architectural parameter that selectively modulates cognitive capabilities, rather than merely serving as a compression metric. We provide the first systematic characterization of this selective preservation phenomenon. Notably, we document a robust inverse correlation (r = -0.864, p = 0.012 in Llama-3B) between factual knowledge capacity (MMLU) and truthfulness metrics (TruthfulQA-MC2): as knowledge degrades, the model's ability to discriminate misconceptions improves consistently. This connects two previously distinct research areas, demonstrating that MAW-guided width pruning acts as a selective filter, reducing parametric knowledge while preserving or enhancing behavioral alignment. Additionally, we quantify context-dependent efficiency trade-offs: pruned configurations achieve up to 23% reduction in energy consumption (J/token) but incur penalties in single-request latency, whereas batch processing workloads benefit uniformly.

  • 1 authors
·
Dec 27, 2025 1

REFRAG: Rethinking RAG based Decoding

Large Language Models (LLMs) have demonstrated remarkable capabilities in leveraging extensive external knowledge to enhance responses in multi-turn and agentic applications, such as retrieval-augmented generation (RAG). However, processing long-context inputs introduces significant system latency and demands substantial memory for the key-value cache, resulting in reduced throughput and a fundamental trade-off between knowledge enrichment and system efficiency. While minimizing latency for long-context inputs is a primary objective for LLMs, we contend that RAG require specialized consideration. In RAG, much of the LLM context consists of concatenated passages from retrieval, with only a small subset directly relevant to the query. These passages often exhibit low semantic similarity due to diversity or deduplication during re-ranking, leading to block-diagonal attention patterns that differ from those in standard LLM generation tasks. Based on this observation, we argue that most computations over the RAG context during decoding are unnecessary and can be eliminated with minimal impact on performance. To this end, we propose REFRAG, an efficient decoding framework that compresses, senses, and expands to improve latency in RAG applications. By exploiting the sparsity structure, we demonstrate a 30.85 the time-to-first-token acceleration (3.75 improvement to previous work) without loss in perplexity. In addition, our optimization framework for large context enables REFRAG to extend the context size of LLMs by 16. We provide rigorous validation of REFRAG across diverse long-context tasks, including RAG, multi-turn conversations, and long document summarization, spanning a wide range of datasets. Experimental results confirm that REFRAG delivers substantial speedup with no loss in accuracy compared to LLaMA models and other state-of-the-art baselines across various context sizes.

  • 5 authors
·
Aug 31, 2025

FastVLM: Efficient Vision Encoding for Vision Language Models

Scaling the input image resolution is essential for enhancing the performance of Vision Language Models (VLMs), particularly in text-rich image understanding tasks. However, popular visual encoders such as ViTs become inefficient at high resolutions due to the large number of tokens and high encoding latency caused by stacked self-attention layers. At different operational resolutions, the vision encoder of a VLM can be optimized along two axes: reducing encoding latency and minimizing the number of visual tokens passed to the LLM, thereby lowering overall latency. Based on a comprehensive efficiency analysis of the interplay between image resolution, vision latency, token count, and LLM size, we introduce FastVLM, a model that achieves an optimized trade-off between latency, model size and accuracy. FastVLM incorporates FastViTHD, a novel hybrid vision encoder designed to output fewer tokens and significantly reduce encoding time for high-resolution images. Unlike previous methods, FastVLM achieves the optimal balance between visual token count and image resolution solely by scaling the input image, eliminating the need for additional token pruning and simplifying the model design. In the LLaVA-1.5 setup, FastVLM achieves 3.2times improvement in time-to-first-token (TTFT) while maintaining similar performance on VLM benchmarks compared to prior works. Compared to LLaVa-OneVision at the highest resolution (1152times1152), FastVLM achieves comparable performance on key benchmarks like SeedBench and MMMU, using the same 0.5B LLM, but with 85times faster TTFT and a vision encoder that is 3.4times smaller.

  • 11 authors
·
Dec 17, 2024 6

DocLayout-YOLO: Enhancing Document Layout Analysis through Diverse Synthetic Data and Global-to-Local Adaptive Perception

Document Layout Analysis is crucial for real-world document understanding systems, but it encounters a challenging trade-off between speed and accuracy: multimodal methods leveraging both text and visual features achieve higher accuracy but suffer from significant latency, whereas unimodal methods relying solely on visual features offer faster processing speeds at the expense of accuracy. To address this dilemma, we introduce DocLayout-YOLO, a novel approach that enhances accuracy while maintaining speed advantages through document-specific optimizations in both pre-training and model design. For robust document pre-training, we introduce the Mesh-candidate BestFit algorithm, which frames document synthesis as a two-dimensional bin packing problem, generating the large-scale, diverse DocSynth-300K dataset. Pre-training on the resulting DocSynth-300K dataset significantly improves fine-tuning performance across various document types. In terms of model optimization, we propose a Global-to-Local Controllable Receptive Module that is capable of better handling multi-scale variations of document elements. Furthermore, to validate performance across different document types, we introduce a complex and challenging benchmark named DocStructBench. Extensive experiments on downstream datasets demonstrate that DocLayout-YOLO excels in both speed and accuracy. Code, data, and models are available at https://github.com/opendatalab/DocLayout-YOLO.

  • 4 authors
·
Oct 16, 2024 2

Towards Vehicle-to-everything Autonomous Driving: A Survey on Collaborative Perception

Vehicle-to-everything (V2X) autonomous driving opens up a promising direction for developing a new generation of intelligent transportation systems. Collaborative perception (CP) as an essential component to achieve V2X can overcome the inherent limitations of individual perception, including occlusion and long-range perception. In this survey, we provide a comprehensive review of CP methods for V2X scenarios, bringing a profound and in-depth understanding to the community. Specifically, we first introduce the architecture and workflow of typical V2X systems, which affords a broader perspective to understand the entire V2X system and the role of CP within it. Then, we thoroughly summarize and analyze existing V2X perception datasets and CP methods. Particularly, we introduce numerous CP methods from various crucial perspectives, including collaboration stages, roadside sensors placement, latency compensation, performance-bandwidth trade-off, attack/defense, pose alignment, etc. Moreover, we conduct extensive experimental analyses to compare and examine current CP methods, revealing some essential and unexplored insights. Specifically, we analyze the performance changes of different methods under different bandwidths, providing a deep insight into the performance-bandwidth trade-off issue. Also, we examine methods under different LiDAR ranges. To study the model robustness, we further investigate the effects of various simulated real-world noises on the performance of different CP methods, covering communication latency, lossy communication, localization errors, and mixed noises. In addition, we look into the sim-to-real generalization ability of existing CP methods. At last, we thoroughly discuss issues and challenges, highlighting promising directions for future efforts. Our codes for experimental analysis will be public at https://github.com/memberRE/Collaborative-Perception.

  • 11 authors
·
Aug 31, 2023

Improving Query Representations for Dense Retrieval with Pseudo Relevance Feedback: A Reproducibility Study

Pseudo-Relevance Feedback (PRF) utilises the relevance signals from the top-k passages from the first round of retrieval to perform a second round of retrieval aiming to improve search effectiveness. A recent research direction has been the study and development of PRF methods for deep language models based rankers, and in particular in the context of dense retrievers. Dense retrievers, compared to more complex neural rankers, provide a trade-off between effectiveness, which is often reduced compared to more complex neural rankers, and query latency, which also is reduced making the retrieval pipeline more efficient. The introduction of PRF methods for dense retrievers has been motivated as an attempt to further improve their effectiveness. In this paper, we reproduce and study a recent method for PRF with dense retrievers, called ANCE-PRF. This method concatenates the query text and that of the top-k feedback passages to form a new query input, which is then encoded into a dense representation using a newly trained query encoder based on the original dense retriever used for the first round of retrieval. While the method can potentially be applied to any of the existing dense retrievers, prior work has studied it only in the context of the ANCE dense retriever. We study the reproducibility of ANCE-PRF in terms of both its training (encoding of the PRF signal) and inference (ranking) steps. We further extend the empirical analysis provided in the original work to investigate the effect of the hyper-parameters that govern the training process and the robustness of the method across these different settings. Finally, we contribute a study of the generalisability of the ANCE-PRF method when dense retrievers other than ANCE are used for the first round of retrieval and for encoding the PRF signal.

  • 6 authors
·
Dec 12, 2021

Masked Audio Generation using a Single Non-Autoregressive Transformer

We introduce MAGNeT, a masked generative sequence modeling method that operates directly over several streams of audio tokens. Unlike prior work, MAGNeT is comprised of a single-stage, non-autoregressive transformer. During training, we predict spans of masked tokens obtained from a masking scheduler, while during inference we gradually construct the output sequence using several decoding steps. To further enhance the quality of the generated audio, we introduce a novel rescoring method in which, we leverage an external pre-trained model to rescore and rank predictions from MAGNeT, which will be then used for later decoding steps. Lastly, we explore a hybrid version of MAGNeT, in which we fuse between autoregressive and non-autoregressive models to generate the first few seconds in an autoregressive manner while the rest of the sequence is being decoded in parallel. We demonstrate the efficiency of MAGNeT for the task of text-to-music and text-to-audio generation and conduct an extensive empirical evaluation, considering both objective metrics and human studies. The proposed approach is comparable to the evaluated baselines, while being significantly faster (x7 faster than the autoregressive baseline). Through ablation studies and analysis, we shed light on the importance of each of the components comprising MAGNeT, together with pointing to the trade-offs between autoregressive and non-autoregressive modeling, considering latency, throughput, and generation quality. Samples are available on our demo page https://pages.cs.huji.ac.il/adiyoss-lab/MAGNeT.

  • 9 authors
·
Jan 9, 2024 14

From HNSW to Information-Theoretic Binarization: Rethinking the Architecture of Scalable Vector Search

Modern semantic search and retrieval-augmented generation (RAG) systems rely predominantly on in-memory approximate nearest neighbor (ANN) indexes over high-precision floating-point vectors, resulting in escalating operational cost and inherent trade-offs between latency, throughput, and retrieval accuracy. This paper analyzes the architectural limitations of the dominant "HNSW + float32 + cosine similarity" stack and evaluates existing cost-reduction strategies, including storage disaggregation and lossy vector quantization, which inevitably sacrifice either performance or accuracy. We introduce and empirically evaluate an alternative information-theoretic architecture based on maximally informative binarization (MIB), efficient bitwise distance metrics, and an information-theoretic scoring (ITS) mechanism. Unlike conventional ANN systems, this approach enables exhaustive search over compact binary representations, allowing deterministic retrieval and eliminating accuracy degradation under high query concurrency. Using the MAIR benchmark across 14 datasets and 10,038 queries, we compare this architecture against Elasticsearch, Pinecone, PGVector, and Qdrant. Results demonstrate retrieval quality comparable to full-precision systems, while achieving substantially lower latency and maintaining constant throughput at high request rates. We show that this architectural shift enables a truly serverless, cost-per-query deployment model, challenging the necessity of large in-memory ANN indexes for high-quality semantic search.

moorcheh Moorcheh.ai
·
Dec 16, 2025

RefactorCoderQA: Benchmarking LLMs for Multi-Domain Coding Question Solutions in Cloud and Edge Deployment

To optimize the reasoning and problem-solving capabilities of Large Language Models (LLMs), we propose a novel cloud-edge collaborative architecture that enables a structured, multi-agent prompting framework. This framework comprises three specialized components: GuideLLM, a lightweight model deployed at the edge to provide methodological guidance; SolverLLM, a more powerful model hosted in the cloud responsible for generating code solutions; and JudgeLLM, an automated evaluator for assessing solution correctness and quality. To evaluate and demonstrate the effectiveness of this architecture in realistic settings, we introduce RefactorCoderQA, a comprehensive benchmark designed to evaluate and enhance the performance of Large Language Models (LLMs) across multi-domain coding tasks. Motivated by the limitations of existing benchmarks, RefactorCoderQA systematically covers various technical domains, including Software Engineering, Data Science, Machine Learning, and Natural Language Processing, using authentic coding challenges from Stack Overflow. Extensive experiments reveal that our fine-tuned model, RefactorCoder-MoE, achieves state-of-the-art performance, significantly outperforming leading open-source and commercial baselines with an overall accuracy of 76.84%. Human evaluations further validate the interpretability, accuracy, and practical relevance of the generated solutions. In addition, we evaluate system-level metrics, such as throughput and latency, to gain deeper insights into the performance characteristics and trade-offs of the proposed architecture.

  • 4 authors
·
Sep 12, 2025

ERNIE 5.0 Technical Report

In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.

Towards VM Rescheduling Optimization Through Deep Reinforcement Learning

Modern industry-scale data centers need to manage a large number of virtual machines (VMs). Due to the continual creation and release of VMs, many small resource fragments are scattered across physical machines (PMs). To handle these fragments, data centers periodically reschedule some VMs to alternative PMs, a practice commonly referred to as VM rescheduling. Despite the increasing importance of VM rescheduling as data centers grow in size, the problem remains understudied. We first show that, unlike most combinatorial optimization tasks, the inference time of VM rescheduling algorithms significantly influences their performance, due to dynamic VM state changes during this period. This causes existing methods to scale poorly. Therefore, we develop a reinforcement learning system for VM rescheduling, VM2RL, which incorporates a set of customized techniques, such as a two-stage framework that accommodates diverse constraints and workload conditions, a feature extraction module that captures relational information specific to rescheduling, as well as a risk-seeking evaluation enabling users to optimize the trade-off between latency and accuracy. We conduct extensive experiments with data from an industry-scale data center. Our results show that VM2RL can achieve a performance comparable to the optimal solution but with a running time of seconds. Code and datasets are open-sourced: https://github.com/zhykoties/VMR2L_eurosys, https://drive.google.com/drive/folders/1PfRo1cVwuhH30XhsE2Np3xqJn2GpX5qy.

  • 9 authors
·
May 22, 2025

HAWQV3: Dyadic Neural Network Quantization

Current low-precision quantization algorithms often have the hidden cost of conversion back and forth from floating point to quantized integer values. This hidden cost limits the latency improvement realized by quantizing Neural Networks. To address this, we present HAWQV3, a novel mixed-precision integer-only quantization framework. The contributions of HAWQV3 are the following: (i) An integer-only inference where the entire computational graph is performed only with integer multiplication, addition, and bit shifting, without any floating point operations or even integer division; (ii) A novel hardware-aware mixed-precision quantization method where the bit-precision is calculated by solving an integer linear programming problem that balances the trade-off between model perturbation and other constraints, e.g., memory footprint and latency; (iii) Direct hardware deployment and open source contribution for 4-bit uniform/mixed-precision quantization in TVM, achieving an average speed up of 1.45times for uniform 4-bit, as compared to uniform 8-bit for ResNet50 on T4 GPUs; and (iv) extensive evaluation of the proposed methods on ResNet18/50 and InceptionV3, for various model compression levels with/without mixed precision. For ResNet50, our INT8 quantization achieves an accuracy of 77.58%, which is 2.68% higher than prior integer-only work, and our mixed-precision INT4/8 quantization can reduce INT8 latency by 23% and still achieve 76.73% accuracy. Our framework and the TVM implementation have been open sourced.

  • 11 authors
·
Nov 20, 2020

EffiReasonTrans: RL-Optimized Reasoning for Code Translation

Code translation is a crucial task in software development and maintenance. While recent advancements in large language models (LLMs) have improved automated code translation accuracy, these gains often come at the cost of increased inference latency, hindering real-world development workflows that involve human-in-the-loop inspection. To address this trade-off, we propose EffiReasonTrans, a training framework designed to improve translation accuracy while balancing inference latency. We first construct a high-quality reasoning-augmented dataset by prompting a stronger language model, DeepSeek-R1, to generate intermediate reasoning and target translations. Each (source code, reasoning, target code) triplet undergoes automated syntax and functionality checks to ensure reliability. Based on this dataset, we employ a two-stage training strategy: supervised fine-tuning on reasoning-augmented samples, followed by reinforcement learning to further enhance accuracy and balance inference latency. We evaluate EffiReasonTrans on six translation pairs. Experimental results show that it consistently improves translation accuracy (up to +49.2% CA and +27.8% CodeBLEU compared to the base model) while reducing the number of generated tokens (up to -19.3%) and lowering inference latency in most cases (up to -29.0%). Ablation studies further confirm the complementary benefits of the two-stage training framework. Additionally, EffiReasonTrans demonstrates improved translation accuracy when integrated into agent-based frameworks. Our code and data are available at https://github.com/DeepSoftwareAnalytics/EffiReasonTrans.

  • 9 authors
·
Oct 21, 2025

Partially Conditioned Patch Parallelism for Accelerated Diffusion Model Inference

Diffusion models have exhibited exciting capabilities in generating images and are also very promising for video creation. However, the inference speed of diffusion models is limited by the slow sampling process, restricting its use cases. The sequential denoising steps required for generating a single sample could take tens or hundreds of iterations and thus have become a significant bottleneck. This limitation is more salient for applications that are interactive in nature or require small latency. To address this challenge, we propose Partially Conditioned Patch Parallelism (PCPP) to accelerate the inference of high-resolution diffusion models. Using the fact that the difference between the images in adjacent diffusion steps is nearly zero, Patch Parallelism (PP) leverages multiple GPUs communicating asynchronously to compute patches of an image in multiple computing devices based on the entire image (all patches) in the previous diffusion step. PCPP develops PP to reduce computation in inference by conditioning only on parts of the neighboring patches in each diffusion step, which also decreases communication among computing devices. As a result, PCPP decreases the communication cost by around 70% compared to DistriFusion (the state of the art implementation of PP) and achieves 2.36sim 8.02times inference speed-up using 4sim 8 GPUs compared to 2.32sim 6.71times achieved by DistriFusion depending on the computing device configuration and resolution of generation at the cost of a possible decrease in image quality. PCPP demonstrates the potential to strike a favorable trade-off, enabling high-quality image generation with substantially reduced latency.

  • 3 authors
·
Dec 3, 2024

R-ACP: Real-Time Adaptive Collaborative Perception Leveraging Robust Task-Oriented Communications

Collaborative perception enhances sensing in multirobot and vehicular networks by fusing information from multiple agents, improving perception accuracy and sensing range. However, mobility and non-rigid sensor mounts introduce extrinsic calibration errors, necessitating online calibration, further complicated by limited overlap in sensing regions. Moreover, maintaining fresh information is crucial for timely and accurate sensing. To address calibration errors and ensure timely and accurate perception, we propose a robust task-oriented communication strategy to optimize online self-calibration and efficient feature sharing for Real-time Adaptive Collaborative Perception (R-ACP). Specifically, we first formulate an Age of Perceived Targets (AoPT) minimization problem to capture data timeliness of multi-view streaming. Then, in the calibration phase, we introduce a channel-aware self-calibration technique based on reidentification (Re-ID), which adaptively compresses key features according to channel capacities, effectively addressing calibration issues via spatial and temporal cross-camera correlations. In the streaming phase, we tackle the trade-off between bandwidth and inference accuracy by leveraging an Information Bottleneck (IB) based encoding method to adjust video compression rates based on task relevance, thereby reducing communication overhead and latency. Finally, we design a priority-aware network to filter corrupted features to mitigate performance degradation from packet corruption. Extensive studies demonstrate that our framework outperforms five baselines, improving multiple object detection accuracy (MODA) by 25.49% and reducing communication costs by 51.36% under severely poor channel conditions. Code will be made publicly available: github.com/fangzr/R-ACP.

  • 7 authors
·
Oct 5, 2024

DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving

DistServe improves the performance of large language models (LLMs) serving by disaggregating the prefill and decoding computation. Existing LLM serving systems colocate the two phases and batch the computation of prefill and decoding across all users and requests. We find that this strategy not only leads to strong prefill-decoding interferences but also couples the resource allocation and parallelism plans for both phases. LLM applications often emphasize individual latency for each phase: time to first token (TTFT) for the prefill phase and time per output token (TPOT) of each request for the decoding phase. In the presence of stringent latency requirements, existing systems have to prioritize one latency over the other, or over-provision compute resources to meet both. DistServe assigns prefill and decoding computation to different GPUs, hence eliminating prefill-decoding interferences. Given the application's TTFT and TPOT requirements, DistServe co-optimizes the resource allocation and parallelism strategy tailored for each phase. DistServe also places the two phases according to the serving cluster's bandwidth to minimize the communication caused by disaggregation. As a result, DistServe significantly improves LLM serving performance in terms of the maximum rate that can be served within both TTFT and TPOT constraints on each GPU. Our evaluations show that on various popular LLMs, applications, and latency requirements, DistServe can serve 4.48x more requests or 10.2x tighter SLO, compared to state-of-the-art systems, while staying within latency constraints for > 90% of requests.

  • 8 authors
·
Jan 17, 2024 1

Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve

Each LLM serving request goes through two phases. The first is prefill which processes the entire input prompt to produce one output token and the second is decode which generates the rest of output tokens, one-at-a-time. Prefill iterations have high latency but saturate GPU compute due to parallel processing of the input prompt. In contrast, decode iterations have low latency but also low compute utilization because a decode iteration processes only a single token per request. This makes batching highly effective for decodes and consequently for overall throughput. However, batching multiple requests leads to an interleaving of prefill and decode iterations which makes it challenging to achieve both high throughput and low latency. We introduce an efficient LLM inference scheduler Sarathi-Serve inspired by the techniques we originally proposed for optimizing throughput in Sarathi. Sarathi-Serve leverages chunked-prefills from Sarathi to create stall-free schedules that can add new requests in a batch without pausing ongoing decodes. Stall-free scheduling unlocks the opportunity to improve throughput with large batch sizes while minimizing the effect of batching on latency. Our evaluation shows that Sarathi-Serve improves serving throughput within desired latency SLOs of Mistral-7B by up to 2.6x on a single A100 GPU and up to 6.9x for Falcon-180B on 8 A100 GPUs over Orca and vLLM.

  • 8 authors
·
Mar 4, 2024

LFM2 Technical Report

We present LFM2, a family of Liquid Foundation Models designed for efficient on-device deployment and strong task capabilities. Using hardware-in-the-loop architecture search under edge latency and memory constraints, we obtain a compact hybrid backbone that combines gated short convolutions with a small number of grouped query attention blocks, delivering up to 2x faster prefill and decode on CPUs compared to similarly sized models. The LFM2 family covers 350M-8.3B parameters, including dense models (350M, 700M, 1.2B, 2.6B) and a mixture-of-experts variant (8.3B total, 1.5B active), all with 32K context length. LFM2's training pipeline includes a tempered, decoupled Top-K knowledge distillation objective that avoids support mismatch; curriculum learning with difficulty-ordered data; and a three-stage post-training recipe of supervised fine-tuning, length-normalized preference optimization, and model merging. Pre-trained on 10-12T tokens, LFM2 models achieve strong results across diverse benchmarks; for example, LFM2-2.6B reaches 79.56% on IFEval and 82.41% on GSM8K. We further build multimodal and retrieval variants: LFM2-VL for vision-language tasks, LFM2-Audio for speech, and LFM2-ColBERT for retrieval. LFM2-VL supports tunable accuracy-latency tradeoffs via token-efficient visual processing, while LFM2-Audio separates audio input and output pathways to enable real-time speech-to-speech interaction competitive with models 3x larger. LFM2-ColBERT provides a low-latency encoder for queries and documents, enabling high-performance retrieval across multiple languages. All models are released with open weights and deployment packages for ExecuTorch, llama.cpp, and vLLM, making LFM2 a practical base for edge applications that need fast, memory-efficient inference and strong task capabilities.

LiquidAI Liquid AI
·
Nov 28, 2025 3

Algorithm-hardware Co-design for Deformable Convolution

FPGAs provide a flexible and efficient platform to accelerate rapidly-changing algorithms for computer vision. The majority of existing work focuses on accelerating image classification, while other fundamental vision problems, including object detection and instance segmentation, have not been adequately addressed. Compared with image classification, detection problems are more sensitive to the spatial variance of objects, and therefore, require specialized convolutions to aggregate spatial information. To address this, recent work proposes dynamic deformable convolution to augment regular convolutions. Regular convolutions process a fixed grid of pixels across all the spatial locations in an image, while dynamic deformable convolutions may access arbitrary pixels in the image and the access pattern is input-dependent and varies per spatial location. These properties lead to inefficient memory accesses of inputs with existing hardware. In this work, we first investigate the overhead of the deformable convolution on embedded FPGA SoCs, and then show the accuracy-latency tradeoffs for a set of algorithm modifications including full versus depthwise, fixed-shape, and limited-range. These modifications benefit the energy efficiency for embedded devices in general as they reduce the compute complexity. We then build an efficient object detection network with modified deformable convolutions and quantize the network using state-of-the-art quantization methods. We implement a unified hardware engine on FPGA to support all the operations in the network. Preliminary experiments show that little accuracy is compromised and speedup can be achieved with our co-design optimization for the deformable convolution.

  • 8 authors
·
Feb 18, 2020

EdgeReasoning: Characterizing Reasoning LLM Deployment on Edge GPUs

Edge intelligence paradigm is increasingly demanded by the emerging autonomous systems, such as robotics. Beyond ensuring privacy-preserving operation and resilience in connectivity-limited environments, edge deployment offers significant energy and cost advantages over cloud-based solutions. However, deploying large language models (LLMs) for reasoning tasks on edge GPUs faces critical challenges from strict latency constraints and limited computational resources. To navigate these constraints, developers must balance multiple design factors - choosing reasoning versus non-reasoning architectures, selecting appropriate model sizes, allocating token budgets, and applying test-time scaling strategies - to meet target latency and optimize accuracy. Yet guidance on optimal combinations of these variables remains scarce. In this work, we present EdgeReasoning, a comprehensive study characterizing the deployment of reasoning LLMs on edge GPUs. We systematically quantify latency-accuracy tradeoffs across various LLM architectures and model sizes. We systematically evaluate prompt-based and model-tuning-based techniques for reducing reasoning token length while maintaining performance quality. We further profile test-time scaling methods with varying degrees of parallelism to maximize accuracy under strict latency budgets. Through these analyses, EdgeReasoning maps the Pareto frontier of achievable accuracy-latency configurations, offering systematic guidance for optimal edge deployment of reasoning LLMs.

  • 2 authors
·
Oct 21, 2025

HELP: Hardware-Adaptive Efficient Latency Prediction for NAS via Meta-Learning

For deployment, neural architecture search should be hardware-aware, in order to satisfy the device-specific constraints (e.g., memory usage, latency and energy consumption) and enhance the model efficiency. Existing methods on hardware-aware NAS collect a large number of samples (e.g., accuracy and latency) from a target device, either builds a lookup table or a latency estimator. However, such approach is impractical in real-world scenarios as there exist numerous devices with different hardware specifications, and collecting samples from such a large number of devices will require prohibitive computational and monetary cost. To overcome such limitations, we propose Hardware-adaptive Efficient Latency Predictor (HELP), which formulates the device-specific latency estimation problem as a meta-learning problem, such that we can estimate the latency of a model's performance for a given task on an unseen device with a few samples. To this end, we introduce novel hardware embeddings to embed any devices considering them as black-box functions that output latencies, and meta-learn the hardware-adaptive latency predictor in a device-dependent manner, using the hardware embeddings. We validate the proposed HELP for its latency estimation performance on unseen platforms, on which it achieves high estimation performance with as few as 10 measurement samples, outperforming all relevant baselines. We also validate end-to-end NAS frameworks using HELP against ones without it, and show that it largely reduces the total time cost of the base NAS method, in latency-constrained settings. Code is available at https://github.com/HayeonLee/HELP.

  • 4 authors
·
Jun 16, 2021

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

Serving numerous users and requests concurrently requires good fairness in Large Language Models (LLMs) serving system. This ensures that, at the same cost, the system can meet the Service Level Objectives (SLOs) of more users , such as time to first token (TTFT) and time between tokens (TBT), rather than allowing a few users to experience performance far exceeding the SLOs. To achieve better fairness, the preemption-based scheduling policy dynamically adjusts the priority of each request to maintain balance during runtime. However, existing systems tend to overly prioritize throughput, overlooking the overhead caused by preemption-induced context switching, which is crucial for maintaining fairness through priority adjustments. In this work, we identify three main challenges that result in this overhead. 1) Inadequate I/O utilization. 2) GPU idleness. 3) Unnecessary I/O transmission during multi-turn conversations. Our key insight is that the block-based KV cache memory policy in existing systems, while achieving near-zero memory waste, leads to discontinuity and insufficient granularity in the KV cache memory. To respond, we introduce FastSwitch, a fairness-aware serving system that not only aligns with existing KV cache memory allocation policy but also mitigates context switching overhead. Our evaluation shows that FastSwitch outperforms the state-of-the-art LLM serving system vLLM with speedups of 1.4-11.2x across different tail TTFT and TBT.

  • 3 authors
·
Nov 27, 2024

JITServe: SLO-aware LLM Serving with Imprecise Request Information

The integration of Large Language Models (LLMs) into applications ranging from interactive chatbots to multi-agent systems has introduced a wide spectrum of service-level objectives (SLOs) for responsiveness. These include latency-sensitive requests emphasizing per-token latency in streaming chat, deadline-sensitive requests requiring rapid full responses to trigger external tools, and compound requests with evolving dependencies across multiple LLM calls. Despite-or perhaps, because of-this workload diversity and unpredictable request information (e.g., response lengths and dependencies), existing request schedulers have focused on aggregate performance, unable to ensure application-level SLO needs. This paper presents JITServe, the first SLO-aware LLM serving system designed to maximize service goodput (e.g., the number of tokens meeting request SLOs) across diverse workloads. JITServe novelly schedules requests using imprecise request information and gradually relaxes this conservatism by refining request information estimates as generation progresses. It applies a grouped margin goodput maximization algorithm to allocate just enough serving bandwidth to satisfy each request's SLO just-in-time (JIT), maximizing residual capacity for others, while deciding the composition of requests in a batch to maximize efficiency and goodput with provable guarantees. Our evaluation across diverse realistic workloads, including chat, deep research, and agentic pipelines, shows that JITServe improves service goodput by 1.4x-6.3x, alternatively achieving 28.5%-83.2% resource savings, compared to state-of-the-art designs.

  • 8 authors
·
Apr 24, 2025

MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training

Contrastive pretraining of image-text foundation models, such as CLIP, demonstrated excellent zero-shot performance and improved robustness on a wide range of downstream tasks. However, these models utilize large transformer-based encoders with significant memory and latency overhead which pose challenges for deployment on mobile devices. In this work, we introduce MobileCLIP -- a new family of efficient image-text models optimized for runtime performance along with a novel and efficient training approach, namely multi-modal reinforced training. The proposed training approach leverages knowledge transfer from an image captioning model and an ensemble of strong CLIP encoders to improve the accuracy of efficient models. Our approach avoids train-time compute overhead by storing the additional knowledge in a reinforced dataset. MobileCLIP sets a new state-of-the-art latency-accuracy tradeoff for zero-shot classification and retrieval tasks on several datasets. Our MobileCLIP-S2 variant is 2.3times faster while more accurate compared to previous best CLIP model based on ViT-B/16. We further demonstrate the effectiveness of our multi-modal reinforced training by training a CLIP model based on ViT-B/16 image backbone and achieving +2.9% average performance improvement on 38 evaluation benchmarks compared to the previous best. Moreover, we show that the proposed approach achieves 10times-1000times improved learning efficiency when compared with non-reinforced CLIP training.

  • 5 authors
·
Nov 28, 2023 1