- Watermarking Without Standards Is Not AI Governance Watermarking has emerged as a leading technical proposal for attributing generative AI content and is increasingly cited in global governance frameworks. This paper argues that current implementations risk serving as symbolic compliance rather than delivering effective oversight. We identify a growing gap between regulatory expectations and the technical limitations of existing watermarking schemes. Through analysis of policy proposals and industry practices, we show how incentive structures disincentivize robust, auditable deployments. To realign watermarking with governance goals, we propose a three-layer framework encompassing technical standards, audit infrastructure, and enforcement mechanisms. Without enforceable requirements and independent verification, watermarking will remain inadequate for accountability and ultimately undermine broader efforts in AI safety and regulation. 3 authors · May 27, 2025
2 Benchmarking LLMs for Political Science: A United Nations Perspective Large Language Models (LLMs) have achieved significant advances in natural language processing, yet their potential for high-stake political decision-making remains largely unexplored. This paper addresses the gap by focusing on the application of LLMs to the United Nations (UN) decision-making process, where the stakes are particularly high and political decisions can have far-reaching consequences. We introduce a novel dataset comprising publicly available UN Security Council (UNSC) records from 1994 to 2024, including draft resolutions, voting records, and diplomatic speeches. Using this dataset, we propose the United Nations Benchmark (UNBench), the first comprehensive benchmark designed to evaluate LLMs across four interconnected political science tasks: co-penholder judgment, representative voting simulation, draft adoption prediction, and representative statement generation. These tasks span the three stages of the UN decision-making process--drafting, voting, and discussing--and aim to assess LLMs' ability to understand and simulate political dynamics. Our experimental analysis demonstrates the potential and challenges of applying LLMs in this domain, providing insights into their strengths and limitations in political science. This work contributes to the growing intersection of AI and political science, opening new avenues for research and practical applications in global governance. The UNBench Repository can be accessed at: https://github.com/yueqingliang1/UNBench. 9 authors · Feb 19, 2025 2
45 On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective Generative Foundation Models (GenFMs) have emerged as transformative tools. However, their widespread adoption raises critical concerns regarding trustworthiness across dimensions. This paper presents a comprehensive framework to address these challenges through three key contributions. First, we systematically review global AI governance laws and policies from governments and regulatory bodies, as well as industry practices and standards. Based on this analysis, we propose a set of guiding principles for GenFMs, developed through extensive multidisciplinary collaboration that integrates technical, ethical, legal, and societal perspectives. Second, we introduce TrustGen, the first dynamic benchmarking platform designed to evaluate trustworthiness across multiple dimensions and model types, including text-to-image, large language, and vision-language models. TrustGen leverages modular components--metadata curation, test case generation, and contextual variation--to enable adaptive and iterative assessments, overcoming the limitations of static evaluation methods. Using TrustGen, we reveal significant progress in trustworthiness while identifying persistent challenges. Finally, we provide an in-depth discussion of the challenges and future directions for trustworthy GenFMs, which reveals the complex, evolving nature of trustworthiness, highlighting the nuanced trade-offs between utility and trustworthiness, and consideration for various downstream applications, identifying persistent challenges and providing a strategic roadmap for future research. This work establishes a holistic framework for advancing trustworthiness in GenAI, paving the way for safer and more responsible integration of GenFMs into critical applications. To facilitate advancement in the community, we release the toolkit for dynamic evaluation. 66 authors · Feb 20, 2025 2
1 Responsible AI Technical Report KT developed a Responsible AI (RAI) assessment methodology and risk mitigation technologies to ensure the safety and reliability of AI services. By analyzing the Basic Act on AI implementation and global AI governance trends, we established a unique approach for regulatory compliance and systematically identify and manage all potential risk factors from AI development to operation. We present a reliable assessment methodology that systematically verifies model safety and robustness based on KT's AI risk taxonomy tailored to the domestic environment. We also provide practical tools for managing and mitigating identified AI risks. With the release of this report, we also release proprietary Guardrail : SafetyGuard that blocks harmful responses from AI models in real-time, supporting the enhancement of safety in the domestic AI development ecosystem. We also believe these research outcomes provide valuable insights for organizations seeking to develop Responsible AI. 19 authors · Sep 24, 2025
- Economic Policy Challenges for the Age of AI This paper examines the profound challenges that transformative advances in AI towards Artificial General Intelligence (AGI) will pose for economists and economic policymakers. I examine how the Age of AI will revolutionize the basic structure of our economies by diminishing the role of labor, leading to unprecedented productivity gains but raising concerns about job disruption, income distribution, and the value of education and human capital. I explore what roles may remain for labor post-AGI, and which production factors will grow in importance. The paper then identifies eight key challenges for economic policy in the Age of AI: (1) inequality and income distribution, (2) education and skill development, (3) social and political stability, (4) macroeconomic policy, (5) antitrust and market regulation, (6) intellectual property, (7) environmental implications, and (8) global AI governance. It concludes by emphasizing how economists can contribute to a better understanding of these challenges. 1 authors · Sep 19, 2024
- Data Governance in the Age of Large-Scale Data-Driven Language Technology The recent emergence and adoption of Machine Learning technology, and specifically of Large Language Models, has drawn attention to the need for systematic and transparent management of language data. This work proposes an approach to global language data governance that attempts to organize data management amongst stakeholders, values, and rights. Our proposal is informed by prior work on distributed governance that accounts for human values and grounded by an international research collaboration that brings together researchers and practitioners from 60 countries. The framework we present is a multi-party international governance structure focused on language data, and incorporating technical and organizational tools needed to support its work. 21 authors · May 3, 2022 1
12 A Cartography of Open Collaboration in Open Source AI: Mapping Practices, Motivations, and Governance in 14 Open Large Language Model Projects The proliferation of open large language models (LLMs) is fostering a vibrant ecosystem of research and innovation in artificial intelligence (AI). However, the methods of collaboration used to develop open LLMs both before and after their public release have not yet been comprehensively studied, limiting our understanding of how open LLM projects are initiated, organized, and governed as well as what opportunities there are to foster this ecosystem even further. We address this gap through an exploratory analysis of open collaboration throughout the development and reuse lifecycle of open LLMs, drawing on semi-structured interviews with the developers of 14 open LLMs from grassroots projects, research institutes, startups, and Big Tech companies in North America, Europe, Africa, and Asia. We make three key contributions to research and practice. First, collaboration in open LLM projects extends far beyond the LLMs themselves, encompassing datasets, benchmarks, open source frameworks, leaderboards, knowledge sharing and discussion forums, and compute partnerships, among others. Second, open LLM developers have a variety of social, economic, and technological motivations, from democratizing AI access and promoting open science to building regional ecosystems and expanding language representation. Third, the sampled open LLM projects exhibit five distinct organizational models, ranging from single company projects to non-profit-sponsored grassroots projects, which vary in their centralization of control and community engagement strategies used throughout the open LLM lifecycle. We conclude with practical recommendations for stakeholders seeking to support the global community building a more open future for AI. 4 authors · Sep 29, 2025 2
- A Novel Kuhnian Ontology for Epistemic Classification of STM Scholarly Articles Despite rapid gains in scale, research evaluation still relies on opaque, lagging proxies. To serve the scientific community, we pursue transparency: reproducible, auditable epistemic classification useful for funding and policy. Here we formalize KGX3 as a scenario-based model for mapping Kuhnian stages from research papers, prove determinism of the classification pipeline, and define the epistemic manifold that yields paradigm maps. We report validation across recent corpora, operational complexity at global scale, and governance that preserves interpretability while protecting core IP. The system delivers early, actionable signals of drift, crisis, and shift unavailable to citation metrics or citations-anchored NLP. KGX3 is the latest iteration of a deterministic epistemic engine developed since 2019, originating as Soph.io (2020), advanced as iKuhn (2024), and field-tested through Preprint Watch in 2025. 1 authors · Feb 9, 2020
5 International Institutions for Advanced AI International institutions may have an important role to play in ensuring advanced AI systems benefit humanity. International collaborations can unlock AI's ability to further sustainable development, and coordination of regulatory efforts can reduce obstacles to innovation and the spread of benefits. Conversely, the potential dangerous capabilities of powerful and general-purpose AI systems create global externalities in their development and deployment, and international efforts to further responsible AI practices could help manage the risks they pose. This paper identifies a set of governance functions that could be performed at an international level to address these challenges, ranging from supporting access to frontier AI systems to setting international safety standards. It groups these functions into four institutional models that exhibit internal synergies and have precedents in existing organizations: 1) a Commission on Frontier AI that facilitates expert consensus on opportunities and risks from advanced AI, 2) an Advanced AI Governance Organization that sets international standards to manage global threats from advanced models, supports their implementation, and possibly monitors compliance with a future governance regime, 3) a Frontier AI Collaborative that promotes access to cutting-edge AI, and 4) an AI Safety Project that brings together leading researchers and engineers to further AI safety research. We explore the utility of these models and identify open questions about their viability. 11 authors · Jul 10, 2023