new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 17

Combined Scheduling, Memory Allocation and Tensor Replacement for Minimizing Off-Chip Data Accesses of DNN Accelerators

Specialized hardware accelerators have been extensively used for Deep Neural Networks (DNNs) to provide power/performance benefits. These accelerators contain specialized hardware that supports DNN operators, and scratchpad memory for storing the tensor operands. Often, the size of the scratchpad is insufficient to store all the tensors needed for the computation, and additional data accesses are needed to move tensors back and forth from host memory during the computation with significant power/performance overhead. The volume of these additional data accesses depends on the operator schedule, and memory allocation (specific locations selected for the tensors in the scratchpad). We propose an optimization framework, named COSMA, for mapping DNNs to an accelerator that finds the optimal operator schedule, memory allocation and tensor replacement that minimizes the additional data accesses. COSMA provides an Integer Linear Programming (ILP) formulation to generate the optimal solution for mapping a DNN to the accelerator for a given scratchpad size. We demonstrate that, using an off-the-shelf ILP solver, COSMA obtains the optimal solution in seconds for a wide-range of state-of-the-art DNNs for different applications. Further, it out-performs existing methods by reducing on average 84% of the non-compulsory data accesses. We further propose a divide-and-conquer heuristic to scale up to certain complex DNNs generated by Neural Architecture Search, and this heuristic solution reduces on average 85% data accesses compared with other works.

  • 3 authors
·
Nov 29, 2023

Linear Model Merging Unlocks Simple and Scalable Multimodal Data Mixture Optimization

Selecting the best data mixture is critical for successful Supervised Fine-Tuning (SFT) of Multimodal Large Language Models. However, determining the optimal mixture weights across multiple domain-specific datasets remains a significant bottleneck due to the combinatorial search space and the high cost associated with even a single training run. This is the so-called Data Mixture Optimization (DMO) problem. On the other hand, model merging unifies domain-specific experts through parameter interpolation. This strategy is efficient, as it only requires a single training run per domain, yet oftentimes leads to suboptimal models. In this work, we take the best of both worlds, studying model merging as an efficient strategy for estimating the performance of different data mixtures. We train domain-specific multimodal experts and evaluate their weighted parameter-space combinations to estimate the efficacy of corresponding data mixtures. We conduct extensive experiments on 14 multimodal benchmarks, and empirically demonstrate that the merged proxy models exhibit a high rank correlation with models trained on actual data mixtures. This decouples the search for optimal mixtures from the resource-intensive training process, thereby providing a scalable and efficient strategy for navigating the complex landscape of mixture weights. Code is publicly available at https://github.com/BerasiDavide/mLLMs_merging_4_DMO.

  • 4 authors
·
Feb 4