1 Visualizing the Obvious: A Concreteness-based Ensemble Model for Noun Property Prediction Neural language models encode rich knowledge about entities and their relationships which can be extracted from their representations using probing. Common properties of nouns (e.g., red strawberries, small ant) are, however, more challenging to extract compared to other types of knowledge because they are rarely explicitly stated in texts. We hypothesize this to mainly be the case for perceptual properties which are obvious to the participants in the communication. We propose to extract these properties from images and use them in an ensemble model, in order to complement the information that is extracted from language models. We consider perceptual properties to be more concrete than abstract properties (e.g., interesting, flawless). We propose to use the adjectives' concreteness score as a lever to calibrate the contribution of each source (text vs. images). We evaluate our ensemble model in a ranking task where the actual properties of a noun need to be ranked higher than other non-relevant properties. Our results show that the proposed combination of text and images greatly improves noun property prediction compared to powerful text-based language models. 5 authors · Oct 23, 2022
- ICC: Quantifying Image Caption Concreteness for Multimodal Dataset Curation Web-scale training on paired text-image data is becoming increasingly central to multimodal learning, but is challenged by the highly noisy nature of datasets in the wild. Standard data filtering approaches succeed in removing mismatched text-image pairs, but permit semantically related but highly abstract or subjective text. These approaches lack the fine-grained ability to isolate the most concrete samples that provide the strongest signal for learning in a noisy dataset. In this work, we propose a new metric, image caption concreteness, that evaluates caption text without an image reference to measure its concreteness and relevancy for use in multimodal learning. Our approach leverages strong foundation models for measuring visual-semantic information loss in multimodal representations. We demonstrate that this strongly correlates with human evaluation of concreteness in both single-word and sentence-level texts. Moreover, we show that curation using ICC complements existing approaches: It succeeds in selecting the highest quality samples from multimodal web-scale datasets to allow for efficient training in resource-constrained settings. 4 authors · Mar 2, 2024
- Using large language models to estimate features of multi-word expressions: Concreteness, valence, arousal This study investigates the potential of large language models (LLMs) to provide accurate estimates of concreteness, valence and arousal for multi-word expressions. Unlike previous artificial intelligence (AI) methods, LLMs can capture the nuanced meanings of multi-word expressions. We systematically evaluated ChatGPT-4o's ability to predict concreteness, valence and arousal. In Study 1, ChatGPT-4o showed strong correlations with human concreteness ratings (r = .8) for multi-word expressions. In Study 2, these findings were repeated for valence and arousal ratings of individual words, matching or outperforming previous AI models. Study 3 extended the prevalence and arousal analysis to multi-word expressions and showed promising results despite the lack of large-scale human benchmarks. These findings highlight the potential of LLMs for generating valuable psycholinguistic data related to multiword expressions. To help researchers with stimulus selection, we provide datasets with AI norms of concreteness, valence and arousal for 126,397 English single words and 63,680 multi-word expressions 6 authors · Aug 16, 2024
- Improving Pacing in Long-Form Story Planning Existing LLM-based systems for writing long-form stories or story outlines frequently suffer from unnatural pacing, whether glossing over important events or over-elaborating on insignificant details, resulting in a jarring experience for the reader. We propose a CONCrete Outline ConTrol (CONCOCT) system to improve pacing when automatically generating story outlines. We first train a concreteness evaluator to judge which of two events is more concrete (low-level-detailed). This evaluator can then be used to control pacing in hierarchical outline generation; in this work, we explore a vaguest-first expansion procedure that aims for uniform pacing. We further use the evaluator to filter new outline items based on predicted concreteness. Compared to a baseline hierarchical outline generator, humans judge CONCOCT's pacing to be more consistent over 57% of the time across multiple outline lengths; the gains also translate to downstream stories. All code, data, and models are open-sourced. 4 authors · Nov 7, 2023
3 Psycholinguistic Word Features: a New Approach for the Evaluation of LLMs Alignment with Humans The evaluation of LLMs has so far focused primarily on how well they can perform different tasks such as reasoning, question-answering, paraphrasing, or translating. For most of these tasks, performance can be measured with objective metrics, such as the number of correct answers. However, other language features are not easily quantified. For example, arousal, concreteness, or gender associated with a given word, as well as the extent to which we experience words with senses and relate them to a specific sense. Those features have been studied for many years by psycholinguistics, conducting large-scale experiments with humans to produce ratings for thousands of words. This opens an opportunity to evaluate how well LLMs align with human ratings on these word features, taking advantage of existing studies that cover many different language features in a large number of words. In this paper, we evaluate the alignment of a representative group of LLMs with human ratings on two psycholinguistic datasets: the Glasgow and Lancaster norms. These datasets cover thirteen features over thousands of words. The results show that alignment is black{generally} better in the Glasgow norms evaluated (arousal, valence, dominance, concreteness, imageability, familiarity, and gender) than on the Lancaster norms evaluated (introceptive, gustatory, olfactory, haptic, auditory, and visual). This suggests a potential limitation of current LLMs in aligning with human sensory associations for words, which may be due to their lack of embodied cognition present in humans and illustrates the usefulness of evaluating LLMs with psycholinguistic datasets. 6 authors · May 29, 2025
1 "Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing Hallucination has emerged as the most vulnerable aspect of contemporary Large Language Models (LLMs). In this paper, we introduce the Sorry, Come Again (SCA) prompting, aimed to avoid LLM hallucinations by enhancing comprehension through: (i) optimal paraphrasing and (ii) injecting [PAUSE] tokens to delay LLM generation. First, we provide an in-depth analysis of linguistic nuances: formality, readability, and concreteness of prompts for 21 LLMs, and elucidate how these nuances contribute to hallucinated generation. Prompts with lower readability, formality, or concreteness pose comprehension challenges for LLMs, similar to those faced by humans. In such scenarios, an LLM tends to speculate and generate content based on its imagination (associative memory) to fill these information gaps. Although these speculations may occasionally align with factual information, their accuracy is not assured, often resulting in hallucination. Recent studies reveal that an LLM often neglects the middle sections of extended prompts, a phenomenon termed as lost in the middle. While a specific paraphrase may suit one LLM, the same paraphrased version may elicit a different response from another LLM. Therefore, we propose an optimal paraphrasing technique to identify the most comprehensible paraphrase of a given prompt, evaluated using Integrated Gradient (and its variations) to guarantee that the LLM accurately processes all words. While reading lengthy sentences, humans often pause at various points to better comprehend the meaning read thus far. We have fine-tuned an LLM with injected [PAUSE] tokens, allowing the LLM to pause while reading lengthier prompts. This has brought several key contributions: (i) determining the optimal position to inject [PAUSE], (ii) determining the number of [PAUSE] tokens to be inserted, and (iii) introducing reverse proxy tuning to fine-tune the LLM for [PAUSE] insertion. 7 authors · Mar 27, 2024
26 IntrEx: A Dataset for Modeling Engagement in Educational Conversations Engagement and motivation are crucial for second-language acquisition, yet maintaining learner interest in educational conversations remains a challenge. While prior research has explored what makes educational texts interesting, still little is known about the linguistic features that drive engagement in conversations. To address this gap, we introduce IntrEx, the first large dataset annotated for interestingness and expected interestingness in teacher-student interactions. Built upon the Teacher-Student Chatroom Corpus (TSCC), IntrEx extends prior work by incorporating sequence-level annotations, allowing for the study of engagement beyond isolated turns to capture how interest evolves over extended dialogues. We employ a rigorous annotation process with over 100 second-language learners, using a comparison-based rating approach inspired by reinforcement learning from human feedback (RLHF) to improve agreement. We investigate whether large language models (LLMs) can predict human interestingness judgments. We find that LLMs (7B/8B parameters) fine-tuned on interestingness ratings outperform larger proprietary models like GPT-4o, demonstrating the potential for specialised datasets to model engagement in educational settings. Finally, we analyze how linguistic and cognitive factors, such as concreteness, comprehensibility (readability), and uptake, influence engagement in educational dialogues. 4 authors · Sep 8, 2025 2
- Words Worth a Thousand Pictures: Measuring and Understanding Perceptual Variability in Text-to-Image Generation Diffusion models are the state of the art in text-to-image generation, but their perceptual variability remains understudied. In this paper, we examine how prompts affect image variability in black-box diffusion-based models. We propose W1KP, a human-calibrated measure of variability in a set of images, bootstrapped from existing image-pair perceptual distances. Current datasets do not cover recent diffusion models, thus we curate three test sets for evaluation. Our best perceptual distance outperforms nine baselines by up to 18 points in accuracy, and our calibration matches graded human judgements 78% of the time. Using W1KP, we study prompt reusability and show that Imagen prompts can be reused for 10-50 random seeds before new images become too similar to already generated images, while Stable Diffusion XL and DALL-E 3 can be reused 50-200 times. Lastly, we analyze 56 linguistic features of real prompts, finding that the prompt's length, CLIP embedding norm, concreteness, and word senses influence variability most. As far as we are aware, we are the first to analyze diffusion variability from a visuolinguistic perspective. Our project page is at http://w1kp.com. 8 authors · Jun 12, 2024