- Channel-Aware Domain-Adaptive Generative Adversarial Network for Robust Speech Recognition While pre-trained automatic speech recognition (ASR) systems demonstrate impressive performance on matched domains, their performance often degrades when confronted with channel mismatch stemming from unseen recording environments and conditions. To mitigate this issue, we propose a novel channel-aware data simulation method for robust ASR training. Our method harnesses the synergistic power of channel-extractive techniques and generative adversarial networks (GANs). We first train a channel encoder capable of extracting embeddings from arbitrary audio. On top of this, channel embeddings are extracted using a minimal amount of target-domain data and used to guide a GAN-based speech synthesizer. This synthesizer generates speech that faithfully preserves the phonetic content of the input while mimicking the channel characteristics of the target domain. We evaluate our method on the challenging Hakka Across Taiwan (HAT) and Taiwanese Across Taiwan (TAT) corpora, achieving relative character error rate (CER) reductions of 20.02% and 9.64%, respectively, compared to the baselines. These results highlight the efficacy of our channel-aware data simulation method for bridging the gap between source- and target-domain acoustics. 6 authors · Sep 18, 2024
- Benchmarking Large Language Models for Cryptanalysis and Mismatched-Generalization Recent advancements in Large Language Models (LLMs) have transformed natural language understanding and generation, leading to extensive benchmarking across diverse tasks. However, cryptanalysis a critical area for data security and encryption has not yet been thoroughly explored in LLM evaluations. To address this gap, we evaluate cryptanalytic potential of state of the art LLMs on encrypted texts generated using a range of cryptographic algorithms. We introduce a novel benchmark dataset comprising diverse plain texts spanning various domains, lengths, writing styles, and topics paired with their encrypted versions. Using zero-shot and few shot settings, we assess multiple LLMs for decryption accuracy and semantic comprehension across different encryption schemes. Our findings reveal key insights into the strengths and limitations of LLMs in side-channel communication while raising concerns about their susceptibility to jailbreaking attacks. This research highlights the dual-use nature of LLMs in security contexts and contributes to the ongoing discussion on AI safety and security. 3 authors · May 30, 2025
- Relative Representations of Latent Spaces enable Efficient Semantic Channel Equalization In multi-user semantic communication, language mismatche poses a significant challenge when independently trained agents interact. We present a novel semantic equalization algorithm that enables communication between agents with different languages without additional retraining. Our algorithm is based on relative representations, a framework that enables different agents employing different neural network models to have unified representation. It proceeds by projecting the latent vectors of different models into a common space defined relative to a set of data samples called anchors, whose number equals the dimension of the resulting space. A communication between different agents translates to a communication of semantic symbols sampled from this relative space. This approach, in addition to aligning the semantic representations of different agents, allows compressing the amount of information being exchanged, by appropriately selecting the number of anchors. Eventually, we introduce a novel anchor selection strategy, which advantageously determines prototypical anchors, capturing the most relevant information for the downstream task. Our numerical results show the effectiveness of the proposed approach allowing seamless communication between agents with radically different models, including differences in terms of neural network architecture and datasets used for initial training. 5 authors · Nov 29, 2024
1 Performance-aware Approximation of Global Channel Pruning for Multitask CNNs Global channel pruning (GCP) aims to remove a subset of channels (filters) across different layers from a deep model without hurting the performance. Previous works focus on either single task model pruning or simply adapting it to multitask scenario, and still face the following problems when handling multitask pruning: 1) Due to the task mismatch, a well-pruned backbone for classification task focuses on preserving filters that can extract category-sensitive information, causing filters that may be useful for other tasks to be pruned during the backbone pruning stage; 2) For multitask predictions, different filters within or between layers are more closely related and interacted than that for single task prediction, making multitask pruning more difficult. Therefore, aiming at multitask model compression, we propose a Performance-Aware Global Channel Pruning (PAGCP) framework. We first theoretically present the objective for achieving superior GCP, by considering the joint saliency of filters from intra- and inter-layers. Then a sequentially greedy pruning strategy is proposed to optimize the objective, where a performance-aware oracle criterion is developed to evaluate sensitivity of filters to each task and preserve the globally most task-related filters. Experiments on several multitask datasets show that the proposed PAGCP can reduce the FLOPs and parameters by over 60% with minor performance drop, and achieves 1.2xsim3.3x acceleration on both cloud and mobile platforms. 5 authors · Mar 21, 2023
- Latent Space Alignment for Semantic Channel Equalization We relax the constraint of a shared language between agents in a semantic and goal-oriented communication system to explore the effect of language mismatch in distributed task solving. We propose a mathematical framework, which provides a modelling and a measure of the semantic distortion introduced in the communication when agents use distinct languages. We then propose a new approach to semantic channel equalization with proven effectiveness through numerical evaluations. 3 authors · May 22, 2024
- Promptable Foundation Models for SAR Remote Sensing: Adapting the Segment Anything Model for Snow Avalanche Segmentation Remote sensing solutions for avalanche segmentation and mapping are key to supporting risk forecasting and mitigation in mountain regions. Synthetic Aperture Radar (SAR) imagery from Sentinel-1 can be effectively used for this task, but training an effective detection model requires gathering a large dataset with high-quality annotations from domain experts, which is prohibitively time-consuming. In this work, we aim to facilitate and accelerate the annotation of SAR images for avalanche mapping. We build on the Segment Anything Model (SAM), a segmentation foundation model trained on natural images, and tailor it to Sentinel-1 SAR data. Adapting SAM to our use-case requires addressing several domain-specific challenges: (i) domain mismatch, since SAM was not trained on satellite/SAR imagery; (ii) input adaptation, because SAR products typically provide more than three channels, while SAM is constrained to RGB images; (iii) robustness to imprecise prompts that can affect target identification and degrade the segmentation quality, an issue exacerbated in small, low-contrast avalanches; and (iv) training efficiency, since standard fine-tuning is computationally demanding for SAM. We tackle these challenges through a combination of adapters to mitigate the domain gap, multiple encoders to handle multi-channel SAR inputs, prompt-engineering strategies to improve avalanche localization accuracy, and a training algorithm that limits the training time of the encoder, which is recognized as the major bottleneck. We integrate the resulting model into an annotation tool and show experimentally that it speeds up the annotation of SAR images. 5 authors · Jan 3
3 An OFDM Signal Identification Method for Wireless Communications Systems Distinction of OFDM signals from single carrier signals is highly important for adaptive receiver algorithms and signal identification applications. OFDM signals exhibit Gaussian characteristics in time domain and fourth order cumulants of Gaussian distributed signals vanish in contrary to the cumulants of other signals. Thus fourth order cumulants can be utilized for OFDM signal identification. In this paper, first, formulations of the estimates of the fourth order cumulants for OFDM signals are provided. Then it is shown these estimates are affected significantly from the wireless channel impairments, frequency offset, phase offset and sampling mismatch. To overcome these problems, a general chi-square constant false alarm rate Gaussianity test which employs estimates of cumulants and their covariances is adapted to the specific case of wireless OFDM signals. Estimation of the covariance matrix of the fourth order cumulants are greatly simplified peculiar to the OFDM signals. A measurement setup is developed to analyze the performance of the identification method and for comparison purposes. A parametric measurement analysis is provided depending on modulation order, signal to noise ratio, number of symbols, and degree of freedom of the underlying test. The proposed method outperforms statistical tests which are based on fixed thresholds or empirical values, while a priori information requirement and complexity of the proposed method are lower than the coherent identification techniques. 2 authors · Dec 29, 2014 17
3 Medal S: Spatio-Textual Prompt Model for Medical Segmentation We introduce Medal S, a medical segmentation foundation model that supports native-resolution spatial and textual prompts within an end-to-end trainable framework. Unlike text-only methods lacking spatial awareness, Medal S achieves channel-wise alignment between volumetric prompts and text embeddings, mitigating inaccuracies from resolution mismatches. By preserving full 3D context, it efficiently processes multiple native-resolution masks in parallel, enhancing multi-class segmentation performance. A lightweight 3D convolutional module enables precise voxel-space refinement guided by both prompt types, supporting up to 243 classes across CT, MRI, PET, ultrasound, and microscopy modalities in the BiomedSegFM dataset. Medal S offers two prompting modes: a text-only mode, where model predictions serve as spatial prompts for self-refinement without human input, and a hybrid mode, incorporating manual annotations for enhanced flexibility. For 24-class segmentation, parallel spatial prompting reduces inference time by more than 90% compared to sequential prompting. We propose dynamic resampling to address target-patch ratio imbalance, extending SAT and nnU-Net for data augmentation. Furthermore, we develop optimized text preprocessing, a two-stage inference strategy, and post-processing techniques to improve memory efficiency, precision, and inference speed. On the five-modality average on the validation set, Medal S outperforms SAT with a DSC of 75.44 (vs. 69.83), NSD of 77.34 (vs. 71.06), F1 of 38.24 (vs. 24.88), and DSC TP of 65.46 (vs. 46.97). Medal S achieves excellent performance by harmonizing spatial precision with semantic textual guidance, demonstrating superior efficiency and accuracy in multi-class medical segmentation tasks compared to sequential prompt-based approaches. Medal S will be publicly available at https://github.com/yinghemedical/Medal-S. 6 authors · Nov 17, 2025 2
- Hallo4: High-Fidelity Dynamic Portrait Animation via Direct Preference Optimization and Temporal Motion Modulation Generating highly dynamic and photorealistic portrait animations driven by audio and skeletal motion remains challenging due to the need for precise lip synchronization, natural facial expressions, and high-fidelity body motion dynamics. We propose a human-preference-aligned diffusion framework that addresses these challenges through two key innovations. First, we introduce direct preference optimization tailored for human-centric animation, leveraging a curated dataset of human preferences to align generated outputs with perceptual metrics for portrait motion-video alignment and naturalness of expression. Second, the proposed temporal motion modulation resolves spatiotemporal resolution mismatches by reshaping motion conditions into dimensionally aligned latent features through temporal channel redistribution and proportional feature expansion, preserving the fidelity of high-frequency motion details in diffusion-based synthesis. The proposed mechanism is complementary to existing UNet and DiT-based portrait diffusion approaches, and experiments demonstrate obvious improvements in lip-audio synchronization, expression vividness, body motion coherence over baseline methods, alongside notable gains in human preference metrics. Our model and source code can be found at: https://github.com/xyz123xyz456/hallo4. 10 authors · May 29, 2025
- Open-Vocabulary Camouflaged Object Segmentation with Cascaded Vision Language Models Open-Vocabulary Camouflaged Object Segmentation (OVCOS) seeks to segment and classify camouflaged objects from arbitrary categories, presenting unique challenges due to visual ambiguity and unseen categories.Recent approaches typically adopt a two-stage paradigm: first segmenting objects, then classifying the segmented regions using Vision Language Models (VLMs).However, these methods (1) suffer from a domain gap caused by the mismatch between VLMs' full-image training and cropped-region inference, and (2) depend on generic segmentation models optimized for well-delineated objects, making them less effective for camouflaged objects.Without explicit guidance, generic segmentation models often overlook subtle boundaries, leading to imprecise segmentation.In this paper,we introduce a novel VLM-guided cascaded framework to address these issues in OVCOS.For segmentation, we leverage the Segment Anything Model (SAM), guided by the VLM.Our framework uses VLM-derived features as explicit prompts to SAM, effectively directing attention to camouflaged regions and significantly improving localization accuracy.For classification, we avoid the domain gap introduced by hard cropping.Instead, we treat the segmentation output as a soft spatial prior via the alpha channel, which retains the full image context while providing precise spatial guidance, leading to more accurate and context-aware classification of camouflaged objects.The same VLM is shared across both segmentation and classification to ensure efficiency and semantic consistency.Extensive experiments on both OVCOS and conventional camouflaged object segmentation benchmarks demonstrate the clear superiority of our method, highlighting the effectiveness of leveraging rich VLM semantics for both segmentation and classification of camouflaged objects. 7 authors · Jun 24, 2025
5 VCNAC: A Variable-Channel Neural Audio Codec for Mono, Stereo, and Surround Sound We present VCNAC, a variable channel neural audio codec. Our approach features a single encoder and decoder parametrization that enables native inference for different channel setups, from mono speech to cinematic 5.1 channel surround audio. Channel compatibility objectives ensure that multi-channel content maintains perceptual quality when decoded to fewer channels. The shared representation enables training of generative language models on a single set of codebooks while supporting inference-time scalability across modalities and channel configurations. Evaluation using objective spatial audio metrics and subjective listening tests demonstrates that our unified approach maintains high reconstruction quality across mono, stereo, and surround audio configurations. 5 authors · Jan 21
1 Rethinking Channel Dimensions for Efficient Model Design Designing an efficient model within the limited computational cost is challenging. We argue the accuracy of a lightweight model has been further limited by the design convention: a stage-wise configuration of the channel dimensions, which looks like a piecewise linear function of the network stage. In this paper, we study an effective channel dimension configuration towards better performance than the convention. To this end, we empirically study how to design a single layer properly by analyzing the rank of the output feature. We then investigate the channel configuration of a model by searching network architectures concerning the channel configuration under the computational cost restriction. Based on the investigation, we propose a simple yet effective channel configuration that can be parameterized by the layer index. As a result, our proposed model following the channel parameterization achieves remarkable performance on ImageNet classification and transfer learning tasks including COCO object detection, COCO instance segmentation, and fine-grained classifications. Code and ImageNet pretrained models are available at https://github.com/clovaai/rexnet. 4 authors · Jul 2, 2020