Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeHow to train your ViT? Data, Augmentation, and Regularization in Vision Transformers
Vision Transformers (ViT) have been shown to attain highly competitive performance for a wide range of vision applications, such as image classification, object detection and semantic image segmentation. In comparison to convolutional neural networks, the Vision Transformer's weaker inductive bias is generally found to cause an increased reliance on model regularization or data augmentation ("AugReg" for short) when training on smaller training datasets. We conduct a systematic empirical study in order to better understand the interplay between the amount of training data, AugReg, model size and compute budget. As one result of this study we find that the combination of increased compute and AugReg can yield models with the same performance as models trained on an order of magnitude more training data: we train ViT models of various sizes on the public ImageNet-21k dataset which either match or outperform their counterparts trained on the larger, but not publicly available JFT-300M dataset.
ViT-CoMer: Vision Transformer with Convolutional Multi-scale Feature Interaction for Dense Predictions
Although Vision Transformer (ViT) has achieved significant success in computer vision, it does not perform well in dense prediction tasks due to the lack of inner-patch information interaction and the limited diversity of feature scale. Most existing studies are devoted to designing vision-specific transformers to solve the above problems, which introduce additional pre-training costs. Therefore, we present a plain, pre-training-free, and feature-enhanced ViT backbone with Convolutional Multi-scale feature interaction, named ViT-CoMer, which facilitates bidirectional interaction between CNN and transformer. Compared to the state-of-the-art, ViT-CoMer has the following advantages: (1) We inject spatial pyramid multi-receptive field convolutional features into the ViT architecture, which effectively alleviates the problems of limited local information interaction and single-feature representation in ViT. (2) We propose a simple and efficient CNN-Transformer bidirectional fusion interaction module that performs multi-scale fusion across hierarchical features, which is beneficial for handling dense prediction tasks. (3) We evaluate the performance of ViT-CoMer across various dense prediction tasks, different frameworks, and multiple advanced pre-training. Notably, our ViT-CoMer-L achieves 64.3% AP on COCO val2017 without extra training data, and 62.1% mIoU on ADE20K val, both of which are comparable to state-of-the-art methods. We hope ViT-CoMer can serve as a new backbone for dense prediction tasks to facilitate future research. The code will be released at https://github.com/Traffic-X/ViT-CoMer.
DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers
Vision transformers (ViTs) have garnered significant attention for their performance in vision tasks, but the high computational cost and significant latency issues have hindered widespread adoption. Post-training quantization (PTQ), a promising method for model compression, still faces accuracy degradation challenges with ViTs. There are two reasons for this: the existing quantization paradigm does not fit the power-law distribution of post-Softmax activations well, and accuracy inevitably decreases after reparameterizing post-LayerNorm activations. We propose a Distribution-Friendly and Outlier-Aware Post-training Quantization method for Vision Transformers, named DopQ-ViT. DopQ-ViT analyzes the inefficiencies of current quantizers and introduces a distribution-friendly Tan Quantizer called TanQ. TanQ focuses more on values near 1, more accurately preserving the power-law distribution of post-Softmax activations, and achieves favorable results. Besides, during the reparameterization of post-LayerNorm activations from channel-wise to layer-wise quantization, the accuracy degradation is mainly due to the significant impact of outliers in the scaling factors. Therefore, DopQ-ViT proposes a method to select Median as the Optimal Scaling Factor, denoted as MOSF, which compensates for the influence of outliers and preserves the performance of the quantization model. DopQ-ViT has been extensively validated and significantly improves the performance of quantization models, especially in low-bit settings.
All are Worth Words: A ViT Backbone for Diffusion Models
Vision transformers (ViT) have shown promise in various vision tasks while the U-Net based on a convolutional neural network (CNN) remains dominant in diffusion models. We design a simple and general ViT-based architecture (named U-ViT) for image generation with diffusion models. U-ViT is characterized by treating all inputs including the time, condition and noisy image patches as tokens and employing long skip connections between shallow and deep layers. We evaluate U-ViT in unconditional and class-conditional image generation, as well as text-to-image generation tasks, where U-ViT is comparable if not superior to a CNN-based U-Net of a similar size. In particular, latent diffusion models with U-ViT achieve record-breaking FID scores of 2.29 in class-conditional image generation on ImageNet 256x256, and 5.48 in text-to-image generation on MS-COCO, among methods without accessing large external datasets during the training of generative models. Our results suggest that, for diffusion-based image modeling, the long skip connection is crucial while the down-sampling and up-sampling operators in CNN-based U-Net are not always necessary. We believe that U-ViT can provide insights for future research on backbones in diffusion models and benefit generative modeling on large scale cross-modality datasets.
Token Merging: Your ViT But Faster
We introduce Token Merging (ToMe), a simple method to increase the throughput of existing ViT models without needing to train. ToMe gradually combines similar tokens in a transformer using a general and light-weight matching algorithm that is as fast as pruning while being more accurate. Off-the-shelf, ToMe can 2x the throughput of state-of-the-art ViT-L @ 512 and ViT-H @ 518 models on images and 2.2x the throughput of ViT-L on video with only a 0.2-0.3% accuracy drop in each case. ToMe can also easily be applied during training, improving in practice training speed up to 2x for MAE fine-tuning on video. Training with ToMe further minimizes accuracy drop, leading to 2x the throughput of ViT-B on audio for only a 0.4% mAP drop. Qualitatively, we find that ToMe merges object parts into one token, even over multiple frames of video. Overall, ToMe's accuracy and speed are competitive with state-of-the-art on images, video, and audio.
Multi-Scale And Token Mergence: Make Your ViT More Efficient
Since its inception, Vision Transformer (ViT) has emerged as a prevalent model in the computer vision domain. Nonetheless, the multi-head self-attention (MHSA) mechanism in ViT is computationally expensive due to its calculation of relationships among all tokens. Although some techniques mitigate computational overhead by discarding tokens, this also results in the loss of potential information from those tokens. To tackle these issues, we propose a novel token pruning method that retains information from non-crucial tokens by merging them with more crucial tokens, thereby mitigating the impact of pruning on model performance. Crucial and non-crucial tokens are identified by their importance scores and merged based on similarity scores. Furthermore, multi-scale features are exploited to represent images, which are fused prior to token pruning to produce richer feature representations. Importantly, our method can be seamlessly integrated with various ViTs, enhancing their adaptability. Experimental evidence substantiates the efficacy of our approach in reducing the influence of token pruning on model performance. For instance, on the ImageNet dataset, it achieves a remarkable 33% reduction in computational costs while only incurring a 0.1% decrease in accuracy on DeiT-S.
Diagnosing COVID-19 Severity from Chest X-Ray Images Using ViT and CNN Architectures
The COVID-19 pandemic strained healthcare resources and prompted discussion about how machine learning can alleviate physician burdens and contribute to diagnosis. Chest x-rays (CXRs) are used for diagnosis of COVID-19, but few studies predict the severity of a patient's condition from CXRs. In this study, we produce a large COVID severity dataset by merging three sources and investigate the efficacy of transfer learning using ImageNet- and CXR-pretrained models and vision transformers (ViTs) in both severity regression and classification tasks. A pretrained DenseNet161 model performed the best on the three class severity prediction problem, reaching 80% accuracy overall and 77.3%, 83.9%, and 70% on mild, moderate and severe cases, respectively. The ViT had the best regression results, with a mean absolute error of 0.5676 compared to radiologist-predicted severity scores. The project's source code is publicly available.
Hierarchical Side-Tuning for Vision Transformers
Fine-tuning pre-trained Vision Transformers (ViT) has consistently demonstrated promising performance in the realm of visual recognition. However, adapting large pre-trained models to various tasks poses a significant challenge. This challenge arises from the need for each model to undergo an independent and comprehensive fine-tuning process, leading to substantial computational and memory demands. While recent advancements in Parameter-efficient Transfer Learning (PETL) have demonstrated their ability to achieve superior performance compared to full fine-tuning with a smaller subset of parameter updates, they tend to overlook dense prediction tasks such as object detection and segmentation. In this paper, we introduce Hierarchical Side-Tuning (HST), a novel PETL approach that enables ViT transfer to various downstream tasks effectively. Diverging from existing methods that exclusively fine-tune parameters within input spaces or certain modules connected to the backbone, we tune a lightweight and hierarchical side network (HSN) that leverages intermediate activations extracted from the backbone and generates multi-scale features to make predictions. To validate HST, we conducted extensive experiments encompassing diverse visual tasks, including classification, object detection, instance segmentation, and semantic segmentation. Notably, our method achieves state-of-the-art average Top-1 accuracy of 76.0% on VTAB-1k, all while fine-tuning a mere 0.78M parameters. When applied to object detection tasks on COCO testdev benchmark, HST even surpasses full fine-tuning and obtains better performance with 49.7 box AP and 43.2 mask AP using Cascade Mask R-CNN.
TWLV-I: Analysis and Insights from Holistic Evaluation on Video Foundation Models
In this work, we discuss evaluating video foundation models in a fair and robust manner. Unlike language or image foundation models, many video foundation models are evaluated with differing parameters (such as sampling rate, number of frames, pretraining steps, etc.), making fair and robust comparisons challenging. Therefore, we present a carefully designed evaluation framework for measuring two core capabilities of video comprehension: appearance and motion understanding. Our findings reveal that existing video foundation models, whether text-supervised like UMT or InternVideo2, or self-supervised like V-JEPA, exhibit limitations in at least one of these capabilities. As an alternative, we introduce TWLV-I, a new video foundation model that constructs robust visual representations for both motion- and appearance-based videos. Based on the average top-1 accuracy of linear probing on five action recognition benchmarks, pretrained only on publicly accessible datasets, our model shows a 4.6%p improvement compared to V-JEPA (ViT-L) and a 7.7%p improvement compared to UMT (ViT-L). Even when compared to much larger models, our model demonstrates a 7.2%p improvement compared to DFN (ViT-H), a 2.7%p improvement compared to V-JEPA~(ViT-H) and a 2.8%p improvement compared to InternVideo2 (ViT-g). We provide embedding vectors obtained by TWLV-I from videos of several commonly used video benchmarks, along with evaluation source code that can directly utilize these embeddings. The code is available on "https://github.com/twelvelabs-io/video-embeddings-evaluation-framework".
Scaling may be all you need for achieving human-level object recognition capacity with human-like visual experience
This paper asks whether current self-supervised learning methods, if sufficiently scaled up, would be able to reach human-level visual object recognition capabilities with the same type and amount of visual experience humans learn from. Previous work on this question only considered the scaling of data size. Here, we consider the simultaneous scaling of data size, model size, and image resolution. We perform a scaling experiment with vision transformers up to 633M parameters in size (ViT-H/14) trained with up to 5K hours of human-like video data (long, continuous, mostly egocentric videos) with image resolutions of up to 476x476 pixels. The efficiency of masked autoencoders (MAEs) as a self-supervised learning algorithm makes it possible to run this scaling experiment on an unassuming academic budget. We find that it is feasible to reach human-level object recognition capacity at sub-human scales of model size, data size, and image size, if these factors are scaled up simultaneously. To give a concrete example, we estimate that a 2.5B parameter ViT model trained with 20K hours (2.3 years) of human-like video data with a spatial resolution of 952x952 pixels should be able to reach roughly human-level accuracy on ImageNet. Human-level competence is thus achievable for a fundamental perceptual capability from human-like perceptual experience (human-like in both amount and type) with extremely generic learning algorithms and architectures and without any substantive inductive biases.
SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods still depend largely on a confined set of training datasets. In this work, we investigate scaling up EHPS towards the first generalist foundation model (dubbed SMPLer-X), with up to ViT-Huge as the backbone and training with up to 4.5M instances from diverse data sources. With big data and the large model, SMPLer-X exhibits strong performance across diverse test benchmarks and excellent transferability to even unseen environments. 1) For the data scaling, we perform a systematic investigation on 32 EHPS datasets, including a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. 2) For the model scaling, we take advantage of vision transformers to study the scaling law of model sizes in EHPS. Moreover, our finetuning strategy turn SMPLer-X into specialist models, allowing them to achieve further performance boosts. Notably, our foundation model SMPLer-X consistently delivers state-of-the-art results on seven benchmarks such as AGORA (107.2 mm NMVE), UBody (57.4 mm PVE), EgoBody (63.6 mm PVE), and EHF (62.3 mm PVE without finetuning). Homepage: https://caizhongang.github.io/projects/SMPLer-X/
SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods focus on training innovative architectural designs on confined datasets. In this work, we investigate the impact of scaling up EHPS towards a family of generalist foundation models. 1) For data scaling, we perform a systematic investigation on 40 EHPS datasets, encompassing a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. Ultimately, we achieve diminishing returns at 10M training instances from diverse data sources. 2) For model scaling, we take advantage of vision transformers (up to ViT-Huge as the backbone) to study the scaling law of model sizes in EHPS. To exclude the influence of algorithmic design, we base our experiments on two minimalist architectures: SMPLer-X, which consists of an intermediate step for hand and face localization, and SMPLest-X, an even simpler version that reduces the network to its bare essentials and highlights significant advances in the capture of articulated hands. With big data and the large model, the foundation models exhibit strong performance across diverse test benchmarks and excellent transferability to even unseen environments. Moreover, our finetuning strategy turns the generalist into specialist models, allowing them to achieve further performance boosts. Notably, our foundation models consistently deliver state-of-the-art results on seven benchmarks such as AGORA, UBody, EgoBody, and our proposed SynHand dataset for comprehensive hand evaluation. (Code is available at: https://github.com/wqyin/SMPLest-X).
LeJEPA: Provable and Scalable Self-Supervised Learning Without the Heuristics
Learning manipulable representations of the world and its dynamics is central to AI. Joint-Embedding Predictive Architectures (JEPAs) offer a promising blueprint, but lack of practical guidance and theory has led to ad-hoc R&D. We present a comprehensive theory of JEPAs and instantiate it in {\bf LeJEPA}, a lean, scalable, and theoretically grounded training objective. First, we identify the isotropic Gaussian as the optimal distribution that JEPAs' embeddings should follow to minimize downstream prediction risk. Second, we introduce a novel objective--{\bf Sketched Isotropic Gaussian Regularization} (SIGReg)--to constrain embeddings to reach that ideal distribution. Combining the JEPA predictive loss with SIGReg yields LeJEPA with numerous theoretical and practical benefits: (i) single trade-off hyperparameter, (ii) linear time and memory complexity, (iii) stability across hyper-parameters, architectures (ResNets, ViTs, ConvNets) and domains, (iv) heuristics-free, e.g., no stop-gradient, no teacher-student, no hyper-parameter schedulers, and (v) distributed training-friendly implementation requiring only approx50 lines of code. Our empirical validation covers 10+ datasets, 60+ architectures, all with varying scales and domains. As an example, using imagenet-1k for pretraining and linear evaluation with frozen backbone, LeJEPA reaches 79\% with a ViT-H/14. We hope that the simplicity and theory-friendly ecosystem offered by LeJEPA will reestablish self-supervised pre-training as a core pillar of AI research (https://github.com/rbalestr-lab/lejepa{GitHub repo}).
DeiT-LT Distillation Strikes Back for Vision Transformer Training on Long-Tailed Datasets
Vision Transformer (ViT) has emerged as a prominent architecture for various computer vision tasks. In ViT, we divide the input image into patch tokens and process them through a stack of self attention blocks. However, unlike Convolutional Neural Networks (CNN), ViTs simple architecture has no informative inductive bias (e.g., locality,etc. ). Due to this, ViT requires a large amount of data for pre-training. Various data efficient approaches (DeiT) have been proposed to train ViT on balanced datasets effectively. However, limited literature discusses the use of ViT for datasets with long-tailed imbalances. In this work, we introduce DeiT-LT to tackle the problem of training ViTs from scratch on long-tailed datasets. In DeiT-LT, we introduce an efficient and effective way of distillation from CNN via distillation DIST token by using out-of-distribution images and re-weighting the distillation loss to enhance focus on tail classes. This leads to the learning of local CNN-like features in early ViT blocks, improving generalization for tail classes. Further, to mitigate overfitting, we propose distilling from a flat CNN teacher, which leads to learning low-rank generalizable features for DIST tokens across all ViT blocks. With the proposed DeiT-LT scheme, the distillation DIST token becomes an expert on the tail classes, and the classifier CLS token becomes an expert on the head classes. The experts help to effectively learn features corresponding to both the majority and minority classes using a distinct set of tokens within the same ViT architecture. We show the effectiveness of DeiT-LT for training ViT from scratch on datasets ranging from small-scale CIFAR-10 LT to large-scale iNaturalist-2018.
Scaling Vision Transformers to 22 Billion Parameters
The scaling of Transformers has driven breakthrough capabilities for language models. At present, the largest large language models (LLMs) contain upwards of 100B parameters. Vision Transformers (ViT) have introduced the same architecture to image and video modelling, but these have not yet been successfully scaled to nearly the same degree; the largest dense ViT contains 4B parameters (Chen et al., 2022). We present a recipe for highly efficient and stable training of a 22B-parameter ViT (ViT-22B) and perform a wide variety of experiments on the resulting model. When evaluated on downstream tasks (often with a lightweight linear model on frozen features), ViT-22B demonstrates increasing performance with scale. We further observe other interesting benefits of scale, including an improved tradeoff between fairness and performance, state-of-the-art alignment to human visual perception in terms of shape/texture bias, and improved robustness. ViT-22B demonstrates the potential for "LLM-like" scaling in vision, and provides key steps towards getting there.
Taming SAM for Underwater Instance Segmentation and Beyond
With recent breakthroughs in large-scale modeling, the Segment Anything Model (SAM) has demonstrated significant potential in a variety of visual applications. However, due to the lack of underwater domain expertise, SAM and its variants face performance limitations in end-to-end underwater instance segmentation tasks, while their higher computational requirements further hinder their application in underwater scenarios. To address this challenge, we propose a large-scale underwater instance segmentation dataset, UIIS10K, which includes 10,048 images with pixel-level annotations for 10 categories. Then, we introduce UWSAM, an efficient model designed for automatic and accurate segmentation of underwater instances. UWSAM efficiently distills knowledge from the SAM ViT-Huge image encoder into the smaller ViT-Small image encoder via the Mask GAT-based Underwater Knowledge Distillation (MG-UKD) method for effective visual representation learning. Furthermore, we design an End-to-end Underwater Prompt Generator (EUPG) for UWSAM, which automatically generates underwater prompts instead of explicitly providing foreground points or boxes as prompts, thus enabling the network to locate underwater instances accurately for efficient segmentation. Comprehensive experimental results show that our model is effective, achieving significant performance improvements over state-of-the-art methods on multiple underwater instance datasets. Datasets and codes are available at https://github.com/LiamLian0727/UIIS10K.
AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer
Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community. Despite the high accuracy, deploying it in real applications raises critical challenges including the high computational cost and inference latency. Recently, the post-training quantization (PTQ) technique has emerged as a promising way to enhance ViT's efficiency. Nevertheless, existing PTQ approaches for ViT suffer from the inflexible quantization on the post-Softmax and post-GELU activations that obey the power-law-like distributions. To address these issues, we propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer. It optimizes the logarithmic base to accommodate the power-law-like distribution of activations, while simultaneously allowing for hardware-friendly quantization and de-quantization. By employing the bias reparameterization, the AdaLog quantizer is applicable to both the post-Softmax and post-GELU activations. Moreover, we develop an efficient Fast Progressive Combining Search (FPCS) strategy to determine the optimal logarithm base for AdaLog, as well as the scaling factors and zero points for the uniform quantizers. Extensive experimental results on public benchmarks demonstrate the effectiveness of our approach for various ViT-based architectures and vision tasks including classification, object detection, and instance segmentation. Code is available at https://github.com/GoatWu/AdaLog.
Multi-criteria Token Fusion with One-step-ahead Attention for Efficient Vision Transformers
Vision Transformer (ViT) has emerged as a prominent backbone for computer vision. For more efficient ViTs, recent works lessen the quadratic cost of the self-attention layer by pruning or fusing the redundant tokens. However, these works faced the speed-accuracy trade-off caused by the loss of information. Here, we argue that token fusion needs to consider diverse relations between tokens to minimize information loss. In this paper, we propose a Multi-criteria Token Fusion (MCTF), that gradually fuses the tokens based on multi-criteria (e.g., similarity, informativeness, and size of fused tokens). Further, we utilize the one-step-ahead attention, which is the improved approach to capture the informativeness of the tokens. By training the model equipped with MCTF using a token reduction consistency, we achieve the best speed-accuracy trade-off in the image classification (ImageNet1K). Experimental results prove that MCTF consistently surpasses the previous reduction methods with and without training. Specifically, DeiT-T and DeiT-S with MCTF reduce FLOPs by about 44% while improving the performance (+0.5%, and +0.3%) over the base model, respectively. We also demonstrate the applicability of MCTF in various Vision Transformers (e.g., T2T-ViT, LV-ViT), achieving at least 31% speedup without performance degradation. Code is available at https://github.com/mlvlab/MCTF.
EfficientFormer: Vision Transformers at MobileNet Speed
Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various benchmarks. However, due to the massive number of parameters and model design, e.g., attention mechanism, ViT-based models are generally times slower than lightweight convolutional networks. Therefore, the deployment of ViT for real-time applications is particularly challenging, especially on resource-constrained hardware such as mobile devices. Recent efforts try to reduce the computation complexity of ViT through network architecture search or hybrid design with MobileNet block, yet the inference speed is still unsatisfactory. This leads to an important question: can transformers run as fast as MobileNet while obtaining high performance? To answer this, we first revisit the network architecture and operators used in ViT-based models and identify inefficient designs. Then we introduce a dimension-consistent pure transformer (without MobileNet blocks) as a design paradigm. Finally, we perform latency-driven slimming to get a series of final models dubbed EfficientFormer. Extensive experiments show the superiority of EfficientFormer in performance and speed on mobile devices. Our fastest model, EfficientFormer-L1, achieves 79.2% top-1 accuracy on ImageNet-1K with only 1.6 ms inference latency on iPhone 12 (compiled with CoreML), which runs as fast as MobileNetV2times 1.4 (1.6 ms, 74.7% top-1), and our largest model, EfficientFormer-L7, obtains 83.3% accuracy with only 7.0 ms latency. Our work proves that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance.
S2AFormer: Strip Self-Attention for Efficient Vision Transformer
Vision Transformer (ViT) has made significant advancements in computer vision, thanks to its token mixer's sophisticated ability to capture global dependencies between all tokens. However, the quadratic growth in computational demands as the number of tokens increases limits its practical efficiency. Although recent methods have combined the strengths of convolutions and self-attention to achieve better trade-offs, the expensive pairwise token affinity and complex matrix operations inherent in self-attention remain a bottleneck. To address this challenge, we propose S2AFormer, an efficient Vision Transformer architecture featuring novel Strip Self-Attention (SSA). We design simple yet effective Hybrid Perception Blocks (HPBs) to effectively integrate the local perception capabilities of CNNs with the global context modeling of Transformer's attention mechanisms. A key innovation of SSA lies in its reducing the spatial dimensions of K and V while compressing the channel dimensions of Q and K. This design significantly reduces computational overhead while preserving accuracy, striking an optimal balance between efficiency and effectiveness. We evaluate the robustness and efficiency of S2AFormer through extensive experiments on multiple vision benchmarks, including ImageNet-1k for image classification, ADE20k for semantic segmentation, and COCO for object detection and instance segmentation. Results demonstrate that S2AFormer achieves significant accuracy gains with superior efficiency in both GPU and non-GPU environments, making it a strong candidate for efficient vision Transformers.
Visual Instruction Tuning towards General-Purpose Multimodal Model: A Survey
Traditional computer vision generally solves each single task independently by a dedicated model with the task instruction implicitly designed in the model architecture, arising two limitations: (1) it leads to task-specific models, which require multiple models for different tasks and restrict the potential synergies from diverse tasks; (2) it leads to a pre-defined and fixed model interface that has limited interactivity and adaptability in following user' task instructions. To address them, Visual Instruction Tuning (VIT) has been intensively studied recently, which finetunes a large vision model with language as task instructions, aiming to learn from a wide range of vision tasks described by language instructions a general-purpose multimodal model that can follow arbitrary instructions and thus solve arbitrary tasks specified by the user. This work aims to provide a systematic review of visual instruction tuning, covering (1) the background that presents computer vision task paradigms and the development of VIT; (2) the foundations of VIT that introduce commonly used network architectures, visual instruction tuning frameworks and objectives, and evaluation setups and tasks; (3) the commonly used datasets in visual instruction tuning and evaluation; (4) the review of existing VIT methods that categorizes them with a taxonomy according to both the studied vision task and the method design and highlights the major contributions, strengths, and shortcomings of them; (5) the comparison and discussion of VIT methods over various instruction-following benchmarks; (6) several challenges, open directions and possible future works in visual instruction tuning research.
DICEPTION: A Generalist Diffusion Model for Visual Perceptual Tasks
Our primary goal here is to create a good, generalist perception model that can tackle multiple tasks, within limits on computational resources and training data. To achieve this, we resort to text-to-image diffusion models pre-trained on billions of images. Our exhaustive evaluation metrics demonstrate that DICEPTION effectively tackles multiple perception tasks, achieving performance on par with state-of-the-art models. We achieve results on par with SAM-vit-h using only 0.06% of their data (e.g., 600K vs. 1B pixel-level annotated images). Inspired by Wang et al., DICEPTION formulates the outputs of various perception tasks using color encoding; and we show that the strategy of assigning random colors to different instances is highly effective in both entity segmentation and semantic segmentation. Unifying various perception tasks as conditional image generation enables us to fully leverage pre-trained text-to-image models. Thus, DICEPTION can be efficiently trained at a cost of orders of magnitude lower, compared to conventional models that were trained from scratch. When adapting our model to other tasks, it only requires fine-tuning on as few as 50 images and 1% of its parameters. DICEPTION provides valuable insights and a more promising solution for visual generalist models.
Masked Autoencoders Are Scalable Vision Learners
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
Efficient Low-rank Backpropagation for Vision Transformer Adaptation
The increasing scale of vision transformers (ViT) has made the efficient fine-tuning of these large models for specific needs a significant challenge in various applications. This issue originates from the computationally demanding matrix multiplications required during the backpropagation process through linear layers in ViT. In this paper, we tackle this problem by proposing a new Low-rank BackPropagation via Walsh-Hadamard Transformation (LBP-WHT) method. Intuitively, LBP-WHT projects the gradient into a low-rank space and carries out backpropagation. This approach substantially reduces the computation needed for adapting ViT, as matrix multiplication in the low-rank space is far less resource-intensive. We conduct extensive experiments with different models (ViT, hybrid convolution-ViT model) on multiple datasets to demonstrate the effectiveness of our method. For instance, when adapting an EfficientFormer-L1 model on CIFAR100, our LBP-WHT achieves 10.4% higher accuracy than the state-of-the-art baseline, while requiring 9 MFLOPs less computation. As the first work to accelerate ViT adaptation with low-rank backpropagation, our LBP-WHT method is complementary to many prior efforts and can be combined with them for better performance.
Deep Model Assembling
Large deep learning models have achieved remarkable success in many scenarios. However, training large models is usually challenging, e.g., due to the high computational cost, the unstable and painfully slow optimization procedure, and the vulnerability to overfitting. To alleviate these problems, this work studies a divide-and-conquer strategy, i.e., dividing a large model into smaller modules, training them independently, and reassembling the trained modules to obtain the target model. This approach is promising since it avoids directly training large models from scratch. Nevertheless, implementing this idea is non-trivial, as it is difficult to ensure the compatibility of the independently trained modules. In this paper, we present an elegant solution to address this issue, i.e., we introduce a global, shared meta model to implicitly link all the modules together. This enables us to train highly compatible modules that collaborate effectively when they are assembled together. We further propose a module incubation mechanism that enables the meta model to be designed as an extremely shallow network. As a result, the additional overhead introduced by the meta model is minimalized. Though conceptually simple, our method significantly outperforms end-to-end (E2E) training in terms of both final accuracy and training efficiency. For example, on top of ViT-Huge, it improves the accuracy by 2.7% compared to the E2E baseline on ImageNet-1K, while saving the training cost by 43% in the meantime. Code is available at https://github.com/LeapLabTHU/Model-Assembling.
Demystifying CLIP Data
Contrastive Language-Image Pre-training (CLIP) is an approach that has advanced research and applications in computer vision, fueling modern recognition systems and generative models. We believe that the main ingredient to the success of CLIP is its data and not the model architecture or pre-training objective. However, CLIP only provides very limited information about its data and how it has been collected, leading to works that aim to reproduce CLIP's data by filtering with its model parameters. In this work, we intend to reveal CLIP's data curation approach and in our pursuit of making it open to the community introduce Metadata-Curated Language-Image Pre-training (MetaCLIP). MetaCLIP takes a raw data pool and metadata (derived from CLIP's concepts) and yields a balanced subset over the metadata distribution. Our experimental study rigorously isolates the model and training settings, concentrating solely on data. MetaCLIP applied to CommonCrawl with 400M image-text data pairs outperforms CLIP's data on multiple standard benchmarks. In zero-shot ImageNet classification, MetaCLIP achieves 70.8% accuracy, surpassing CLIP's 68.3% on ViT-B models. Scaling to 1B data, while maintaining the same training budget, attains 72.4%. Our observations hold across various model sizes, exemplified by ViT-H achieving 80.5%, without any bells-and-whistles. Curation code and training data distribution on metadata is made available at https://github.com/facebookresearch/MetaCLIP.
Rethinking Vision Transformer for Large-Scale Fine-Grained Image Retrieval
Large-scale fine-grained image retrieval (FGIR) aims to retrieve images belonging to the same subcategory as a given query by capturing subtle differences in a large-scale setting. Recently, Vision Transformers (ViT) have been employed in FGIR due to their powerful self-attention mechanism for modeling long-range dependencies. However, most Transformer-based methods focus primarily on leveraging self-attention to distinguish fine-grained details, while overlooking the high computational complexity and redundant dependencies inherent to these models, limiting their scalability and effectiveness in large-scale FGIR. In this paper, we propose an Efficient and Effective ViT-based framework, termed EET, which integrates token pruning module with a discriminative transfer strategy to address these limitations. Specifically, we introduce a content-based token pruning scheme to enhance the efficiency of the vanilla ViT, progressively removing background or low-discriminative tokens at different stages by exploiting feature responses and self-attention mechanism. To ensure the resulting efficient ViT retains strong discriminative power, we further present a discriminative transfer strategy comprising both discriminative knowledge transfer and discriminative region guidance. Using a distillation paradigm, these components transfer knowledge from a larger ``teacher'' ViT to a more efficient ``student'' model, guiding the latter to focus on subtle yet crucial regions in a cost-free manner. Extensive experiments on two widely-used fine-grained datasets and four large-scale fine-grained datasets demonstrate the effectiveness of our method. Specifically, EET reduces the inference latency of ViT-Small by 42.7\% and boosts the retrieval performance of 16-bit hash codes by 5.15\% on the challenging NABirds dataset.
U-REPA: Aligning Diffusion U-Nets to ViTs
Representation Alignment (REPA) that aligns Diffusion Transformer (DiT) hidden-states with ViT visual encoders has proven highly effective in DiT training, demonstrating superior convergence properties, but it has not been validated on the canonical diffusion U-Net architecture that shows faster convergence compared to DiTs. However, adapting REPA to U-Net architectures presents unique challenges: (1) different block functionalities necessitate revised alignment strategies; (2) spatial-dimension inconsistencies emerge from U-Net's spatial downsampling operations; (3) space gaps between U-Net and ViT hinder the effectiveness of tokenwise alignment. To encounter these challenges, we propose U-REPA, a representation alignment paradigm that bridges U-Net hidden states and ViT features as follows: Firstly, we propose via observation that due to skip connection, the middle stage of U-Net is the best alignment option. Secondly, we propose upsampling of U-Net features after passing them through MLPs. Thirdly, we observe difficulty when performing tokenwise similarity alignment, and further introduces a manifold loss that regularizes the relative similarity between samples. Experiments indicate that the resulting U-REPA could achieve excellent generation quality and greatly accelerates the convergence speed. With CFG guidance interval, U-REPA could reach FID<1.5 in 200 epochs or 1M iterations on ImageNet 256 times 256, and needs only half the total epochs to perform better than REPA. Codes are available at https://github.com/YuchuanTian/U-REPA.
Scaling Vision Transformers
Attention-based neural networks such as the Vision Transformer (ViT) have recently attained state-of-the-art results on many computer vision benchmarks. Scale is a primary ingredient in attaining excellent results, therefore, understanding a model's scaling properties is a key to designing future generations effectively. While the laws for scaling Transformer language models have been studied, it is unknown how Vision Transformers scale. To address this, we scale ViT models and data, both up and down, and characterize the relationships between error rate, data, and compute. Along the way, we refine the architecture and training of ViT, reducing memory consumption and increasing accuracy of the resulting models. As a result, we successfully train a ViT model with two billion parameters, which attains a new state-of-the-art on ImageNet of 90.45% top-1 accuracy. The model also performs well for few-shot transfer, for example, reaching 84.86% top-1 accuracy on ImageNet with only 10 examples per class.
From Sparse to Soft Mixtures of Experts
Sparse mixture of expert architectures (MoEs) scale model capacity without large increases in training or inference costs. Despite their success, MoEs suffer from a number of issues: training instability, token dropping, inability to scale the number of experts, or ineffective finetuning. In this work, we proposeSoft MoE, a fully-differentiable sparse Transformer that addresses these challenges, while maintaining the benefits of MoEs. Soft MoE performs an implicit soft assignment by passing different weighted combinations of all input tokens to each expert. As in other MoE works, experts in Soft MoE only process a subset of the (combined) tokens, enabling larger model capacity at lower inference cost. In the context of visual recognition, Soft MoE greatly outperforms standard Transformers (ViTs) and popular MoE variants (Tokens Choice and Experts Choice). For example, Soft MoE-Base/16 requires 10.5x lower inference cost (5.7x lower wall-clock time) than ViT-Huge/14 while matching its performance after similar training. Soft MoE also scales well: Soft MoE Huge/14 with 128 experts in 16 MoE layers has over 40x more parameters than ViT Huge/14, while inference time cost grows by only 2%, and it performs substantially better.
MetaCLIP 2: A Worldwide Scaling Recipe
Contrastive Language-Image Pretraining (CLIP) is a popular foundation model, supporting from zero-shot classification, retrieval to encoders for multimodal large language models (MLLMs). Although CLIP is successfully trained on billion-scale image-text pairs from the English world, scaling CLIP's training further to learning from the worldwide web data is still challenging: (1) no curation method is available to handle data points from non-English world; (2) the English performance from existing multilingual CLIP is worse than its English-only counterpart, i.e., "curse of multilinguality" that is common in LLMs. Here, we present MetaCLIP 2, the first recipe training CLIP from scratch on worldwide web-scale image-text pairs. To generalize our findings, we conduct rigorous ablations with minimal changes that are necessary to address the above challenges and present a recipe enabling mutual benefits from English and non-English world data. In zero-shot ImageNet classification, MetaCLIP 2 ViT-H/14 surpasses its English-only counterpart by 0.8% and mSigLIP by 0.7%, and surprisingly sets new state-of-the-art without system-level confounding factors (e.g., translation, bespoke architecture changes) on multilingual benchmarks, such as CVQA with 57.4%, Babel-ImageNet with 50.2% and XM3600 with 64.3% on image-to-text retrieval.
EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss
We present EfficientViT-SAM, a new family of accelerated segment anything models. We retain SAM's lightweight prompt encoder and mask decoder while replacing the heavy image encoder with EfficientViT. For the training, we begin with the knowledge distillation from the SAM-ViT-H image encoder to EfficientViT. Subsequently, we conduct end-to-end training on the SA-1B dataset. Benefiting from EfficientViT's efficiency and capacity, EfficientViT-SAM delivers 48.9x measured TensorRT speedup on A100 GPU over SAM-ViT-H without sacrificing performance. Our code and pre-trained models are released at https://github.com/mit-han-lab/efficientvit.
Faster Segment Anything: Towards Lightweight SAM for Mobile Applications
Segment anything model (SAM) is a prompt-guided vision foundation model for cutting out the object of interest from its background. Since Meta research team released the SA project, SAM has attracted significant attention due to its impressive zero-shot transfer performance and high versatility of being compatible with other models for advanced vision applications like image editing with fine-grained control. Many of such use cases need to be run on resource-constraint edge devices, like mobile Apps. In this work, we aim to make SAM mobile-friendly by replacing the heavyweight image encoder with a lightweight one. A naive way to train such a new SAM as in the original SAM paper leads to unsatisfactory performance, especially when limited training sources are available. We find that this is mainly caused by the coupled optimization of the image encoder and mask decoder, motivated by which we propose decoupled distillation. Concretely, we distill the knowledge from the image encoder ViT-H in the original SAM to a lightweight image encoder, which can be automatically compatible with the mask decoder in the original SAM. The training can be completed on a single GPU within less than one day, and the resulting lightweight SAM is termed MobileSAM which is more than 60 times smaller yet performs on par with the original SAM. For inference speed, MobileSAM runs around 10ms per image: 8ms on the image encoder and 2ms on the mask decoder. With superior performance and a higher versatility, our MobileSAM is 7 times smaller and 4 times faster than the concurrent FastSAM, making it more suitable for mobile applications. The code for MobileSAM project is provided at https://github.com/ChaoningZhang/MobileSAM
Evaluating Deep Learning Models for African Wildlife Image Classification: From DenseNet to Vision Transformers
Wildlife populations in Africa face severe threats, with vertebrate numbers declining by over 65% in the past five decades. In response, image classification using deep learning has emerged as a promising tool for biodiversity monitoring and conservation. This paper presents a comparative study of deep learning models for automatically classifying African wildlife images, focusing on transfer learning with frozen feature extractors. Using a public dataset of four species: buffalo, elephant, rhinoceros, and zebra; we evaluate the performance of DenseNet-201, ResNet-152, EfficientNet-B4, and Vision Transformer ViT-H/14. DenseNet-201 achieved the best performance among convolutional networks (67% accuracy), while ViT-H/14 achieved the highest overall accuracy (99%), but with significantly higher computational cost, raising deployment concerns. Our experiments highlight the trade-offs between accuracy, resource requirements, and deployability. The best-performing CNN (DenseNet-201) was integrated into a Hugging Face Gradio Space for real-time field use, demonstrating the feasibility of deploying lightweight models in conservation settings. This work contributes to African-grounded AI research by offering practical insights into model selection, dataset preparation, and responsible deployment of deep learning tools for wildlife conservation.
TiC: Exploring Vision Transformer in Convolution
While models derived from Vision Transformers (ViTs) have been phonemically surging, pre-trained models cannot seamlessly adapt to arbitrary resolution images without altering the architecture and configuration, such as sampling the positional encoding, limiting their flexibility for various vision tasks. For instance, the Segment Anything Model (SAM) based on ViT-Huge requires all input images to be resized to 1024times1024. To overcome this limitation, we propose the Multi-Head Self-Attention Convolution (MSA-Conv) that incorporates Self-Attention within generalized convolutions, including standard, dilated, and depthwise ones. Enabling transformers to handle images of varying sizes without retraining or rescaling, the use of MSA-Conv further reduces computational costs compared to global attention in ViT, which grows costly as image size increases. Later, we present the Vision Transformer in Convolution (TiC) as a proof of concept for image classification with MSA-Conv, where two capacity enhancing strategies, namely Multi-Directional Cyclic Shifted Mechanism and Inter-Pooling Mechanism, have been proposed, through establishing long-distance connections between tokens and enlarging the effective receptive field. Extensive experiments have been carried out to validate the overall effectiveness of TiC. Additionally, ablation studies confirm the performance improvement made by MSA-Conv and the two capacity enhancing strategies separately. Note that our proposal aims at studying an alternative to the global attention used in ViT, while MSA-Conv meets our goal by making TiC comparable to state-of-the-art on ImageNet-1K. Code will be released at https://github.com/zs670980918/MSA-Conv.
CoAtNet: Marrying Convolution and Attention for All Data Sizes
Transformers have attracted increasing interests in computer vision, but they still fall behind state-of-the-art convolutional networks. In this work, we show that while Transformers tend to have larger model capacity, their generalization can be worse than convolutional networks due to the lack of the right inductive bias. To effectively combine the strengths from both architectures, we present CoAtNets(pronounced "coat" nets), a family of hybrid models built from two key insights: (1) depthwise Convolution and self-Attention can be naturally unified via simple relative attention; (2) vertically stacking convolution layers and attention layers in a principled way is surprisingly effective in improving generalization, capacity and efficiency. Experiments show that our CoAtNets achieve state-of-the-art performance under different resource constraints across various datasets: Without extra data, CoAtNet achieves 86.0% ImageNet top-1 accuracy; When pre-trained with 13M images from ImageNet-21K, our CoAtNet achieves 88.56% top-1 accuracy, matching ViT-huge pre-trained with 300M images from JFT-300M while using 23x less data; Notably, when we further scale up CoAtNet with JFT-3B, it achieves 90.88% top-1 accuracy on ImageNet, establishing a new state-of-the-art result.
SpaceJAM: a Lightweight and Regularization-free Method for Fast Joint Alignment of Images
The unsupervised task of Joint Alignment (JA) of images is beset by challenges such as high complexity, geometric distortions, and convergence to poor local or even global optima. Although Vision Transformers (ViT) have recently provided valuable features for JA, they fall short of fully addressing these issues. Consequently, researchers frequently depend on expensive models and numerous regularization terms, resulting in long training times and challenging hyperparameter tuning. We introduce the Spatial Joint Alignment Model (SpaceJAM), a novel approach that addresses the JA task with efficiency and simplicity. SpaceJAM leverages a compact architecture with only 16K trainable parameters and uniquely operates without the need for regularization or atlas maintenance. Evaluations on SPair-71K and CUB datasets demonstrate that SpaceJAM matches the alignment capabilities of existing methods while significantly reducing computational demands and achieving at least a 10x speedup. SpaceJAM sets a new standard for rapid and effective image alignment, making the process more accessible and efficient. Our code is available at: https://bgu-cs-vil.github.io/SpaceJAM/.
Comprehensive Survey of Model Compression and Speed up for Vision Transformers
Vision Transformers (ViT) have marked a paradigm shift in computer vision, outperforming state-of-the-art models across diverse tasks. However, their practical deployment is hampered by high computational and memory demands. This study addresses the challenge by evaluating four primary model compression techniques: quantization, low-rank approximation, knowledge distillation, and pruning. We methodically analyze and compare the efficacy of these techniques and their combinations in optimizing ViTs for resource-constrained environments. Our comprehensive experimental evaluation demonstrates that these methods facilitate a balanced compromise between model accuracy and computational efficiency, paving the way for wider application in edge computing devices.
Transfer Learning for Fine-grained Classification Using Semi-supervised Learning and Visual Transformers
Fine-grained classification is a challenging task that involves identifying subtle differences between objects within the same category. This task is particularly challenging in scenarios where data is scarce. Visual transformers (ViT) have recently emerged as a powerful tool for image classification, due to their ability to learn highly expressive representations of visual data using self-attention mechanisms. In this work, we explore Semi-ViT, a ViT model fine tuned using semi-supervised learning techniques, suitable for situations where we have lack of annotated data. This is particularly common in e-commerce, where images are readily available but labels are noisy, nonexistent, or expensive to obtain. Our results demonstrate that Semi-ViT outperforms traditional convolutional neural networks (CNN) and ViTs, even when fine-tuned with limited annotated data. These findings indicate that Semi-ViTs hold significant promise for applications that require precise and fine-grained classification of visual data.
Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers
Vision Transformers (ViT) have shown their competitive advantages performance-wise compared to convolutional neural networks (CNNs) though they often come with high computational costs. To this end, previous methods explore different attention patterns by limiting a fixed number of spatially nearby tokens to accelerate the ViT's multi-head self-attention (MHSA) operations. However, such structured attention patterns limit the token-to-token connections to their spatial relevance, which disregards learned semantic connections from a full attention mask. In this work, we propose a novel approach to learn instance-dependent attention patterns, by devising a lightweight connectivity predictor module to estimate the connectivity score of each pair of tokens. Intuitively, two tokens have high connectivity scores if the features are considered relevant either spatially or semantically. As each token only attends to a small number of other tokens, the binarized connectivity masks are often very sparse by nature and therefore provide the opportunity to accelerate the network via sparse computations. Equipped with the learned unstructured attention pattern, sparse attention ViT (Sparsifiner) produces a superior Pareto-optimal trade-off between FLOPs and top-1 accuracy on ImageNet compared to token sparsity. Our method reduces 48% to 69% FLOPs of MHSA while the accuracy drop is within 0.4%. We also show that combining attention and token sparsity reduces ViT FLOPs by over 60%.
Compress image to patches for Vision Transformer
The Vision Transformer (ViT) has made significant strides in the field of computer vision. However, as the depth of the model and the resolution of the input images increase, the computational cost associated with training and running ViT models has surged dramatically. This paper proposes a hybrid model based on CNN and Vision Transformer, named CI2P-ViT. The model incorporates a module called CI2P, which utilizes the CompressAI encoder to compress images and subsequently generates a sequence of patches through a series of convolutions. CI2P can replace the Patch Embedding component in the ViT model, enabling seamless integration into existing ViT models. Compared to ViT-B/16, CI2P-ViT has the number of patches input to the self-attention layer reduced to a quarter of the original. This design not only significantly reduces the computational cost of the ViT model but also effectively enhances the model's accuracy by introducing the inductive bias properties of CNN. The ViT model's precision is markedly enhanced. When trained from the ground up on the Animals-10 dataset, CI2P-ViT achieved an accuracy rate of 92.37%, representing a 3.3% improvement over the ViT-B/16 baseline. Additionally, the model's computational operations, measured in floating-point operations per second (FLOPs), were diminished by 63.35%, and it exhibited a 2-fold increase in training velocity on identical hardware configurations.
LookupViT: Compressing visual information to a limited number of tokens
Vision Transformers (ViT) have emerged as the de-facto choice for numerous industry grade vision solutions. But their inference cost can be prohibitive for many settings, as they compute self-attention in each layer which suffers from quadratic computational complexity in the number of tokens. On the other hand, spatial information in images and spatio-temporal information in videos is usually sparse and redundant. In this work, we introduce LookupViT, that aims to exploit this information sparsity to reduce ViT inference cost. LookupViT provides a novel general purpose vision transformer block that operates by compressing information from higher resolution tokens to a fixed number of tokens. These few compressed tokens undergo meticulous processing, while the higher-resolution tokens are passed through computationally cheaper layers. Information sharing between these two token sets is enabled through a bidirectional cross-attention mechanism. The approach offers multiple advantages - (a) easy to implement on standard ML accelerators (GPUs/TPUs) via standard high-level operators, (b) applicable to standard ViT and its variants, thus generalizes to various tasks, (c) can handle different tokenization and attention approaches. LookupViT also offers flexibility for the compressed tokens, enabling performance-computation trade-offs in a single trained model. We show LookupViT's effectiveness on multiple domains - (a) for image-classification (ImageNet-1K and ImageNet-21K), (b) video classification (Kinetics400 and Something-Something V2), (c) image captioning (COCO-Captions) with a frozen encoder. LookupViT provides 2times reduction in FLOPs while upholding or improving accuracy across these domains. In addition, LookupViT also demonstrates out-of-the-box robustness and generalization on image classification (ImageNet-C,R,A,O), improving by up to 4% over ViT.
Channel Vision Transformers: An Image Is Worth C x 16 x 16 Words
Vision Transformer (ViT) has emerged as a powerful architecture in the realm of modern computer vision. However, its application in certain imaging fields, such as microscopy and satellite imaging, presents unique challenges. In these domains, images often contain multiple channels, each carrying semantically distinct and independent information. Furthermore, the model must demonstrate robustness to sparsity in input channels, as they may not be densely available during training or testing. In this paper, we propose a modification to the ViT architecture that enhances reasoning across the input channels and introduce Hierarchical Channel Sampling (HCS) as an additional regularization technique to ensure robustness when only partial channels are presented during test time. Our proposed model, ChannelViT, constructs patch tokens independently from each input channel and utilizes a learnable channel embedding that is added to the patch tokens, similar to positional embeddings. We evaluate the performance of ChannelViT on ImageNet, JUMP-CP (microscopy cell imaging), and So2Sat (satellite imaging). Our results show that ChannelViT outperforms ViT on classification tasks and generalizes well, even when a subset of input channels is used during testing. Across our experiments, HCS proves to be a powerful regularizer, independent of the architecture employed, suggesting itself as a straightforward technique for robust ViT training. Lastly, we find that ChannelViT generalizes effectively even when there is limited access to all channels during training, highlighting its potential for multi-channel imaging under real-world conditions with sparse sensors. Our code is available at https://github.com/insitro/ChannelViT.
Delving into Masked Autoencoders for Multi-Label Thorax Disease Classification
Vision Transformer (ViT) has become one of the most popular neural architectures due to its great scalability, computational efficiency, and compelling performance in many vision tasks. However, ViT has shown inferior performance to Convolutional Neural Network (CNN) on medical tasks due to its data-hungry nature and the lack of annotated medical data. In this paper, we pre-train ViTs on 266,340 chest X-rays using Masked Autoencoders (MAE) which reconstruct missing pixels from a small part of each image. For comparison, CNNs are also pre-trained on the same 266,340 X-rays using advanced self-supervised methods (e.g., MoCo v2). The results show that our pre-trained ViT performs comparably (sometimes better) to the state-of-the-art CNN (DenseNet-121) for multi-label thorax disease classification. This performance is attributed to the strong recipes extracted from our empirical studies for pre-training and fine-tuning ViT. The pre-training recipe signifies that medical reconstruction requires a much smaller proportion of an image (10% vs. 25%) and a more moderate random resized crop range (0.5~1.0 vs. 0.2~1.0) compared with natural imaging. Furthermore, we remark that in-domain transfer learning is preferred whenever possible. The fine-tuning recipe discloses that layer-wise LR decay, RandAug magnitude, and DropPath rate are significant factors to consider. We hope that this study can direct future research on the application of Transformers to a larger variety of medical imaging tasks.
xLSTM-UNet can be an Effective 2D \& 3D Medical Image Segmentation Backbone with Vision-LSTM (ViL) better than its Mamba Counterpart
Convolutional Neural Networks (CNNs) and Vision Transformers (ViT) have been pivotal in biomedical image segmentation, yet their ability to manage long-range dependencies remains constrained by inherent locality and computational overhead. To overcome these challenges, in this technical report, we first propose xLSTM-UNet, a UNet structured deep learning neural network that leverages Vision-LSTM (xLSTM) as its backbone for medical image segmentation. xLSTM is a recently proposed as the successor of Long Short-Term Memory (LSTM) networks and have demonstrated superior performance compared to Transformers and State Space Models (SSMs) like Mamba in Neural Language Processing (NLP) and image classification (as demonstrated in Vision-LSTM, or ViL implementation). Here, xLSTM-UNet we designed extend the success in biomedical image segmentation domain. By integrating the local feature extraction strengths of convolutional layers with the long-range dependency capturing abilities of xLSTM, xLSTM-UNet offers a robust solution for comprehensive image analysis. We validate the efficacy of xLSTM-UNet through experiments. Our findings demonstrate that xLSTM-UNet consistently surpasses the performance of leading CNN-based, Transformer-based, and Mamba-based segmentation networks in multiple datasets in biomedical segmentation including organs in abdomen MRI, instruments in endoscopic images, and cells in microscopic images. With comprehensive experiments performed, this technical report highlights the potential of xLSTM-based architectures in advancing biomedical image analysis in both 2D and 3D. The code, models, and datasets are publicly available at http://tianrun-chen.github.io/xLSTM-UNet/{http://tianrun-chen.github.io/xLSTM-Unet/}
SBCFormer: Lightweight Network Capable of Full-size ImageNet Classification at 1 FPS on Single Board Computers
Computer vision has become increasingly prevalent in solving real-world problems across diverse domains, including smart agriculture, fishery, and livestock management. These applications may not require processing many image frames per second, leading practitioners to use single board computers (SBCs). Although many lightweight networks have been developed for mobile/edge devices, they primarily target smartphones with more powerful processors and not SBCs with the low-end CPUs. This paper introduces a CNN-ViT hybrid network called SBCFormer, which achieves high accuracy and fast computation on such low-end CPUs. The hardware constraints of these CPUs make the Transformer's attention mechanism preferable to convolution. However, using attention on low-end CPUs presents a challenge: high-resolution internal feature maps demand excessive computational resources, but reducing their resolution results in the loss of local image details. SBCFormer introduces an architectural design to address this issue. As a result, SBCFormer achieves the highest trade-off between accuracy and speed on a Raspberry Pi 4 Model B with an ARM-Cortex A72 CPU. For the first time, it achieves an ImageNet-1K top-1 accuracy of around 80% at a speed of 1.0 frame/sec on the SBC. Code is available at https://github.com/xyongLu/SBCFormer.
Toward a Deeper Understanding: RetNet Viewed through Convolution
The success of Vision Transformer (ViT) has been widely reported on a wide range of image recognition tasks. ViT can learn global dependencies superior to CNN, yet CNN's inherent locality can substitute for expensive training resources. Recently, the outstanding performance of RetNet in the field of language modeling has garnered attention, surpassing that of the Transformer with explicit local modeling, shifting researchers' focus towards Transformers in the CV field. This paper investigates the effectiveness of RetNet from a CNN perspective and presents a variant of RetNet tailored to the visual domain. Similar to RetNet we improves ViT's local modeling by applying a weight mask on the original self-attention matrix. A straightforward way to locally adapt the self-attention matrix can be realized by an element-wise learnable weight mask (ELM), for which our preliminary results show promising results. However, the element-wise simple learnable weight mask not only induces a non-trivial additional parameter overhead but also increases the optimization complexity. To this end, this work proposes a novel Gaussian mixture mask (GMM) in which one mask only has two learnable parameters and it can be conveniently used in any ViT variants whose attention mechanism allows the use of masks. Experimental results on multiple small datasets demonstrate that the effectiveness of our proposed Gaussian mask for boosting ViTs for free (almost zero additional parameter or computation cost). Our code can be publicly available at https://github.com/CatworldLee/Gaussian-Mixture-Mask-Attention.
Unleashing Vanilla Vision Transformer with Masked Image Modeling for Object Detection
We present an approach to efficiently and effectively adapt a masked image modeling (MIM) pre-trained vanilla Vision Transformer (ViT) for object detection, which is based on our two novel observations: (i) A MIM pre-trained vanilla ViT encoder can work surprisingly well in the challenging object-level recognition scenario even with randomly sampled partial observations, e.g., only 25% sim 50% of the input embeddings. (ii) In order to construct multi-scale representations for object detection from single-scale ViT, a randomly initialized compact convolutional stem supplants the pre-trained large kernel patchify stem, and its intermediate features can naturally serve as the higher resolution inputs of a feature pyramid network without further upsampling or other manipulations. While the pre-trained ViT is only regarded as the 3^{rd}-stage of our detector's backbone instead of the whole feature extractor. This results in a ConvNet-ViT hybrid feature extractor. The proposed detector, named MIMDet, enables a MIM pre-trained vanilla ViT to outperform hierarchical Swin Transformer by 2.5 box AP and 2.6 mask AP on COCO, and achieves better results compared with the previous best adapted vanilla ViT detector using a more modest fine-tuning recipe while converging 2.8times faster. Code and pre-trained models are available at https://github.com/hustvl/MIMDet.
Are Vision Transformers Robust to Patch Perturbations?
Recent advances in Vision Transformer (ViT) have demonstrated its impressive performance in image classification, which makes it a promising alternative to Convolutional Neural Network (CNN). Unlike CNNs, ViT represents an input image as a sequence of image patches. The patch-based input image representation makes the following question interesting: How does ViT perform when individual input image patches are perturbed with natural corruptions or adversarial perturbations, compared to CNNs? In this work, we study the robustness of ViT to patch-wise perturbations. Surprisingly, we find that ViTs are more robust to naturally corrupted patches than CNNs, whereas they are more vulnerable to adversarial patches. Furthermore, we discover that the attention mechanism greatly affects the robustness of vision transformers. Specifically, the attention module can help improve the robustness of ViT by effectively ignoring natural corrupted patches. However, when ViTs are attacked by an adversary, the attention mechanism can be easily fooled to focus more on the adversarially perturbed patches and cause a mistake. Based on our analysis, we propose a simple temperature-scaling based method to improve the robustness of ViT against adversarial patches. Extensive qualitative and quantitative experiments are performed to support our findings, understanding, and improvement of ViT robustness to patch-wise perturbations across a set of transformer-based architectures.
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
The recently developed vision transformer (ViT) has achieved promising results on image classification compared to convolutional neural networks. Inspired by this, in this paper, we study how to learn multi-scale feature representations in transformer models for image classification. To this end, we propose a dual-branch transformer to combine image patches (i.e., tokens in a transformer) of different sizes to produce stronger image features. Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity and these tokens are then fused purely by attention multiple times to complement each other. Furthermore, to reduce computation, we develop a simple yet effective token fusion module based on cross attention, which uses a single token for each branch as a query to exchange information with other branches. Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise. Extensive experiments demonstrate that our approach performs better than or on par with several concurrent works on vision transformer, in addition to efficient CNN models. For example, on the ImageNet1K dataset, with some architectural changes, our approach outperforms the recent DeiT by a large margin of 2\% with a small to moderate increase in FLOPs and model parameters. Our source codes and models are available at https://github.com/IBM/CrossViT.
Revisiting Feature Prediction for Learning Visual Representations from Video
This paper explores feature prediction as a stand-alone objective for unsupervised learning from video and introduces V-JEPA, a collection of vision models trained solely using a feature prediction objective, without the use of pretrained image encoders, text, negative examples, reconstruction, or other sources of supervision. The models are trained on 2 million videos collected from public datasets and are evaluated on downstream image and video tasks. Our results show that learning by predicting video features leads to versatile visual representations that perform well on both motion and appearance-based tasks, without adaption of the model's parameters; e.g., using a frozen backbone. Our largest model, a ViT-H/16 trained only on videos, obtains 81.9% on Kinetics-400, 72.2% on Something-Something-v2, and 77.9% on ImageNet1K.
RePaViT: Scalable Vision Transformer Acceleration via Structural Reparameterization on Feedforward Network Layers
We reveal that feedforward network (FFN) layers, rather than attention layers, are the primary contributors to Vision Transformer (ViT) inference latency, with their impact signifying as model size increases. This finding highlights a critical opportunity for optimizing the efficiency of large-scale ViTs by focusing on FFN layers. In this work, we propose a novel channel idle mechanism that facilitates post-training structural reparameterization for efficient FFN layers during testing. Specifically, a set of feature channels remains idle and bypasses the nonlinear activation function in each FFN layer, thereby forming a linear pathway that enables structural reparameterization during inference. This mechanism results in a family of ReParameterizable Vision Transformers (RePaViTs), which achieve remarkable latency reductions with acceptable sacrifices (sometimes gains) in accuracy across various ViTs. The benefits of our method scale consistently with model sizes, demonstrating greater speed improvements and progressively narrowing accuracy gaps or even higher accuracies on larger models. In particular, RePa-ViT-Large and RePa-ViT-Huge enjoy 66.8% and 68.7% speed-ups with +1.7% and +1.1% higher top-1 accuracies under the same training strategy, respectively. RePaViT is the first to employ structural reparameterization on FFN layers to expedite ViTs to our best knowledge, and we believe that it represents an auspicious direction for efficient ViTs. Source code is available at https://github.com/Ackesnal/RePaViT.
Accelerating Vision Transformers with Adaptive Patch Sizes
Vision Transformers (ViTs) partition input images into uniformly sized patches regardless of their content, resulting in long input sequence lengths for high-resolution images. We present Adaptive Patch Transformers (APT), which addresses this by using multiple different patch sizes within the same image. APT reduces the total number of input tokens by allocating larger patch sizes in more homogeneous areas and smaller patches in more complex ones. APT achieves a drastic speedup in ViT inference and training, increasing throughput by 40% on ViT-L and 50% on ViT-H while maintaining downstream performance, and can be applied to a previously fine-tuned ViT, converging in as little as 1 epoch. It also significantly reduces training and inference time without loss of performance in high-resolution dense visual tasks, achieving up to 30\% faster training and inference in visual QA, object detection, and semantic segmentation.
Similarity-Aware Token Pruning: Your VLM but Faster
The computational demands of Vision Transformers (ViTs) and Vision-Language Models (VLMs) remain a significant challenge due to the quadratic complexity of self-attention. While token pruning offers a promising solution, existing methods often introduce training overhead or fail to adapt dynamically across layers. We present SAINT, a training-free token pruning framework that leverages token similarity and a graph-based formulation to dynamically optimize pruning rates and redundancy thresholds. Through systematic analysis, we identify a universal three-stage token evolution process (aligner-explorer-aggregator) in transformers, enabling aggressive pruning in early stages without sacrificing critical information. For ViTs, SAINT doubles the throughput of ViT-H/14 at 224px with only 0.6% accuracy loss on ImageNet-1K, surpassing the closest competitor by 0.8%. For VLMs, we apply SAINT in three modes: ViT-only, LLM-only, and hybrid. SAINT reduces LLaVA-13B's tokens by 75%, achieving latency comparable to LLaVA-7B with less than 1% performance loss across benchmarks. Our work establishes a unified, practical framework for efficient inference in ViTs and VLMs.
Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture
This paper demonstrates an approach for learning highly semantic image representations without relying on hand-crafted data-augmentations. We introduce the Image-based Joint-Embedding Predictive Architecture (I-JEPA), a non-generative approach for self-supervised learning from images. The idea behind I-JEPA is simple: from a single context block, predict the representations of various target blocks in the same image. A core design choice to guide I-JEPA towards producing semantic representations is the masking strategy; specifically, it is crucial to (a) sample target blocks with sufficiently large scale (semantic), and to (b) use a sufficiently informative (spatially distributed) context block. Empirically, when combined with Vision Transformers, we find I-JEPA to be highly scalable. For instance, we train a ViT-Huge/14 on ImageNet using 16 A100 GPUs in under 72 hours to achieve strong downstream performance across a wide range of tasks, from linear classification to object counting and depth prediction.
DiffRate : Differentiable Compression Rate for Efficient Vision Transformers
Token compression aims to speed up large-scale vision transformers (e.g. ViTs) by pruning (dropping) or merging tokens. It is an important but challenging task. Although recent advanced approaches achieved great success, they need to carefully handcraft a compression rate (i.e. number of tokens to remove), which is tedious and leads to sub-optimal performance. To tackle this problem, we propose Differentiable Compression Rate (DiffRate), a novel token compression method that has several appealing properties prior arts do not have. First, DiffRate enables propagating the loss function's gradient onto the compression ratio, which is considered as a non-differentiable hyperparameter in previous work. In this case, different layers can automatically learn different compression rates layer-wisely without extra overhead. Second, token pruning and merging can be naturally performed simultaneously in DiffRate, while they were isolated in previous works. Third, extensive experiments demonstrate that DiffRate achieves state-of-the-art performance. For example, by applying the learned layer-wise compression rates to an off-the-shelf ViT-H (MAE) model, we achieve a 40% FLOPs reduction and a 1.5x throughput improvement, with a minor accuracy drop of 0.16% on ImageNet without fine-tuning, even outperforming previous methods with fine-tuning. Codes and models are available at https://github.com/OpenGVLab/DiffRate.
MobileViG: Graph-Based Sparse Attention for Mobile Vision Applications
Traditionally, convolutional neural networks (CNN) and vision transformers (ViT) have dominated computer vision. However, recently proposed vision graph neural networks (ViG) provide a new avenue for exploration. Unfortunately, for mobile applications, ViGs are computationally expensive due to the overhead of representing images as graph structures. In this work, we propose a new graph-based sparse attention mechanism, Sparse Vision Graph Attention (SVGA), that is designed for ViGs running on mobile devices. Additionally, we propose the first hybrid CNN-GNN architecture for vision tasks on mobile devices, MobileViG, which uses SVGA. Extensive experiments show that MobileViG beats existing ViG models and existing mobile CNN and ViT architectures in terms of accuracy and/or speed on image classification, object detection, and instance segmentation tasks. Our fastest model, MobileViG-Ti, achieves 75.7% top-1 accuracy on ImageNet-1K with 0.78 ms inference latency on iPhone 13 Mini NPU (compiled with CoreML), which is faster than MobileNetV2x1.4 (1.02 ms, 74.7% top-1) and MobileNetV2x1.0 (0.81 ms, 71.8% top-1). Our largest model, MobileViG-B obtains 82.6% top-1 accuracy with only 2.30 ms latency, which is faster and more accurate than the similarly sized EfficientFormer-L3 model (2.77 ms, 82.4%). Our work proves that well designed hybrid CNN-GNN architectures can be a new avenue of exploration for designing models that are extremely fast and accurate on mobile devices. Our code is publicly available at https://github.com/SLDGroup/MobileViG.
F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search
The proliferation of digital food content has intensified the need for robust and accurate systems capable of fine-grained visual understanding and retrieval. In this work, we address the challenging task of food image-to-text matching, a critical component in applications such as dietary monitoring, smart kitchens, and restaurant automation. We propose F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search, a training-free, vision-language model (VLM)-guided framework that significantly improves retrieval performance through enhanced multi-modal feature representations. Our approach introduces two key contributions: (1) a uni-directional(and bi-directional) multi-modal fusion strategy that combines image embeddings with VLM-generated textual descriptions to improve query expressiveness, and (2) a novel feature-based re-ranking mechanism for top-k retrieval, leveraging predicted food ingredients to refine results and boost precision. Leveraging open-source image-text encoders, we demonstrate substantial gains over standard baselines - achieving ~10% and ~7.7% improvements in top-1 retrieval under dense and sparse caption scenarios, and a ~28.6% gain in top-k ingredient-level retrieval. Additionally, we show that smaller models (e.g., ViT-B/32) can match or outperform larger counterparts (e.g., ViT-H, ViT-G, ViT-bigG) when augmented with textual fusion, highlighting the effectiveness of our method in resource-constrained settings. Code and test datasets will be made publicly available at: https://github.com/mailcorahul/f4-its
Stronger ViTs With Octic Equivariance
Recent efforts at scaling computer vision models have established Vision Transformers (ViTs) as the leading architecture. ViTs incorporate weight sharing over image patches as an important inductive bias. In this work, we show that ViTs benefit from incorporating equivariance under the octic group, i.e., reflections and 90-degree rotations, as a further inductive bias. We develop new architectures, octic ViTs, that use octic-equivariant layers and put them to the test on both supervised and self-supervised learning. Through extensive experiments on DeiT-III and DINOv2 training on ImageNet-1K, we show that octic ViTs yield more computationally efficient networks while also improving performance. In particular, we achieve approximately 40% reduction in FLOPs for ViT-H while simultaneously improving both classification and segmentation results.
Vote&Mix: Plug-and-Play Token Reduction for Efficient Vision Transformer
Despite the remarkable success of Vision Transformers (ViTs) in various visual tasks, they are often hindered by substantial computational cost. In this work, we introduce Vote\&Mix (VoMix), a plug-and-play and parameter-free token reduction method, which can be readily applied to off-the-shelf ViT models without any training. VoMix tackles the computational redundancy of ViTs by identifying tokens with high homogeneity through a layer-wise token similarity voting mechanism. Subsequently, the selected tokens are mixed into the retained set, thereby preserving visual information. Experiments demonstrate VoMix significantly improves the speed-accuracy tradeoff of ViTs on both images and videos. Without any training, VoMix achieves a 2times increase in throughput of existing ViT-H on ImageNet-1K and a 2.4times increase in throughput of existing ViT-L on Kinetics-400 video dataset, with a mere 0.3\% drop in top-1 accuracy.
SqueezeSAM: User friendly mobile interactive segmentation
Segment Anything Model (SAM) is a foundation model for interactive segmentation, and it has catalyzed major advances in generative AI, computational photography, and medical imaging. This model takes in an arbitrary user input and provides segmentation masks of the corresponding objects. It is our goal to develop a version of SAM that is appropriate for use in a photography app. The original SAM model has a few challenges in this setting. First, original SAM a 600 million parameter based on ViT-H, and its high computational cost and large model size that are not suitable for todays mobile hardware. We address this by proposing the SqueezeSAM model architecture, which is 50x faster and 100x smaller than SAM. Next, when a user takes a photo on their phone, it might not occur to them to click on the image and get a mask. Our solution is to use salient object detection to generate the first few clicks. This produces an initial segmentation mask that the user can interactively edit. Finally, when a user clicks on an object, they typically expect all related pieces of the object to be segmented. For instance, if a user clicks on a person t-shirt in a photo, they expect the whole person to be segmented, but SAM typically segments just the t-shirt. We address this with a new data augmentation scheme, and the end result is that if the user clicks on a person holding a basketball, the person and the basketball are all segmented together.
Stable and low-precision training for large-scale vision-language models
We introduce new methods for 1) accelerating and 2) stabilizing training for large language-vision models. 1) For acceleration, we introduce SwitchBack, a linear layer for int8 quantized training which provides a speed-up of 13-25% while matching the performance of bfloat16 training within 0.1 percentage points for the 1B parameter CLIP ViT-Huge -- the largest int8 training to date. Our main focus is int8 as GPU support for float8 is rare, though we also analyze float8 training through simulation. While SwitchBack proves effective for float8, we show that standard techniques are also successful if the network is trained and initialized so that large feature magnitudes are discouraged, which we accomplish via layer-scale initialized with zeros. 2) For stability, we analyze loss spikes and find they consistently occur 1-8 iterations after the squared gradients become under-estimated by their AdamW second moment estimator. As a result, we recommend an AdamW-Adafactor hybrid which avoids loss spikes when training a CLIP ViT-Huge model and outperforms gradient clipping at the scales we test.
SimpleClick: Interactive Image Segmentation with Simple Vision Transformers
Click-based interactive image segmentation aims at extracting objects with a limited user clicking. A hierarchical backbone is the de-facto architecture for current methods. Recently, the plain, non-hierarchical Vision Transformer (ViT) has emerged as a competitive backbone for dense prediction tasks. This design allows the original ViT to be a foundation model that can be finetuned for downstream tasks without redesigning a hierarchical backbone for pretraining. Although this design is simple and has been proven effective, it has not yet been explored for interactive image segmentation. To fill this gap, we propose SimpleClick, the first interactive segmentation method that leverages a plain backbone. Based on the plain backbone, we introduce a symmetric patch embedding layer that encodes clicks into the backbone with minor modifications to the backbone itself. With the plain backbone pretrained as a masked autoencoder (MAE), SimpleClick achieves state-of-the-art performance. Remarkably, our method achieves 4.15 NoC@90 on SBD, improving 21.8% over the previous best result. Extensive evaluation on medical images demonstrates the generalizability of our method. We further develop an extremely tiny ViT backbone for SimpleClick and provide a detailed computational analysis, highlighting its suitability as a practical annotation tool.
Sequencer: Deep LSTM for Image Classification
In recent computer vision research, the advent of the Vision Transformer (ViT) has rapidly revolutionized various architectural design efforts: ViT achieved state-of-the-art image classification performance using self-attention found in natural language processing, and MLP-Mixer achieved competitive performance using simple multi-layer perceptrons. In contrast, several studies have also suggested that carefully redesigned convolutional neural networks (CNNs) can achieve advanced performance comparable to ViT without resorting to these new ideas. Against this background, there is growing interest in what inductive bias is suitable for computer vision. Here we propose Sequencer, a novel and competitive architecture alternative to ViT that provides a new perspective on these issues. Unlike ViTs, Sequencer models long-range dependencies using LSTMs rather than self-attention layers. We also propose a two-dimensional version of Sequencer module, where an LSTM is decomposed into vertical and horizontal LSTMs to enhance performance. Despite its simplicity, several experiments demonstrate that Sequencer performs impressively well: Sequencer2D-L, with 54M parameters, realizes 84.6% top-1 accuracy on only ImageNet-1K. Not only that, we show that it has good transferability and the robust resolution adaptability on double resolution-band.
Data Filtering Networks
Large training sets have become a cornerstone of machine learning and are the foundation for recent advances in language modeling and multimodal learning. While data curation for pre-training is often still ad-hoc, one common paradigm is to first collect a massive pool of data from the Web and then filter this candidate pool down to an actual training set via various heuristics. In this work, we study the problem of learning a data filtering network (DFN) for this second step of filtering a large uncurated dataset. Our key finding is that the quality of a network for filtering is distinct from its performance on downstream tasks: for instance, a model that performs well on ImageNet can yield worse training sets than a model with low ImageNet accuracy that is trained on a small amount of high-quality data. Based on our insights, we construct new data filtering networks that induce state-of-the-art image-text datasets. Specifically, our best performing dataset DFN-5B enables us to train state-of-the-art models for their compute budgets: among other improvements on a variety of tasks, a ViT-H trained on our dataset achieves 83.0% zero-shot transfer accuracy on ImageNet, out-performing models trained on other datasets such as LAION-2B, DataComp-1B, or OpenAI's WIT. In order to facilitate further research in dataset design, we also release a new 2 billion example dataset DFN-2B and show that high performance data filtering networks can be trained from scratch using only publicly available data.
Face Recognition in the age of CLIP & Billion image datasets
CLIP (Contrastive Language-Image Pre-training) models developed by OpenAI have achieved outstanding results on various image recognition and retrieval tasks, displaying strong zero-shot performance. This means that they are able to perform effectively on tasks for which they have not been explicitly trained. Inspired by the success of OpenAI CLIP, a new publicly available dataset called LAION-5B was collected which resulted in the development of open ViT-H/14, ViT-G/14 models that outperform the OpenAI L/14 model. The LAION-5B dataset also released an approximate nearest neighbor index, with a web interface for search & subset creation. In this paper, we evaluate the performance of various CLIP models as zero-shot face recognizers. Our findings show that CLIP models perform well on face recognition tasks, but increasing the size of the CLIP model does not necessarily lead to improved accuracy. Additionally, we investigate the robustness of CLIP models against data poisoning attacks by testing their performance on poisoned data. Through this analysis, we aim to understand the potential consequences and misuse of search engines built using CLIP models, which could potentially function as unintentional face recognition engines.
Do Vision Transformers See Like Convolutional Neural Networks?
Convolutional neural networks (CNNs) have so far been the de-facto model for visual data. Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks. This raises a central question: how are Vision Transformers solving these tasks? Are they acting like convolutional networks, or learning entirely different visual representations? Analyzing the internal representation structure of ViTs and CNNs on image classification benchmarks, we find striking differences between the two architectures, such as ViT having more uniform representations across all layers. We explore how these differences arise, finding crucial roles played by self-attention, which enables early aggregation of global information, and ViT residual connections, which strongly propagate features from lower to higher layers. We study the ramifications for spatial localization, demonstrating ViTs successfully preserve input spatial information, with noticeable effects from different classification methods. Finally, we study the effect of (pretraining) dataset scale on intermediate features and transfer learning, and conclude with a discussion on connections to new architectures such as the MLP-Mixer.
When Do We Not Need Larger Vision Models?
Scaling up the size of vision models has been the de facto standard to obtain more powerful visual representations. In this work, we discuss the point beyond which larger vision models are not necessary. First, we demonstrate the power of Scaling on Scales (S^2), whereby a pre-trained and frozen smaller vision model (e.g., ViT-B or ViT-L), run over multiple image scales, can outperform larger models (e.g., ViT-H or ViT-G) on classification, segmentation, depth estimation, Multimodal LLM (MLLM) benchmarks, and robotic manipulation. Notably, S^2 achieves state-of-the-art performance in detailed understanding of MLLM on the V* benchmark, surpassing models such as GPT-4V. We examine the conditions under which S^2 is a preferred scaling approach compared to scaling on model size. While larger models have the advantage of better generalization on hard examples, we show that features of larger vision models can be well approximated by those of multi-scale smaller models. This suggests most, if not all, of the representations learned by current large pre-trained models can also be obtained from multi-scale smaller models. Our results show that a multi-scale smaller model has comparable learning capacity to a larger model, and pre-training smaller models with S^2 can match or even exceed the advantage of larger models. We release a Python package that can apply S^2 on any vision model with one line of code: https://github.com/bfshi/scaling_on_scales.
IML-ViT: Benchmarking Image Manipulation Localization by Vision Transformer
Advanced image tampering techniques are increasingly challenging the trustworthiness of multimedia, leading to the development of Image Manipulation Localization (IML). But what makes a good IML model? The answer lies in the way to capture artifacts. Exploiting artifacts requires the model to extract non-semantic discrepancies between manipulated and authentic regions, necessitating explicit comparisons between the two areas. With the self-attention mechanism, naturally, the Transformer should be a better candidate to capture artifacts. However, due to limited datasets, there is currently no pure ViT-based approach for IML to serve as a benchmark, and CNNs dominate the entire task. Nevertheless, CNNs suffer from weak long-range and non-semantic modeling. To bridge this gap, based on the fact that artifacts are sensitive to image resolution, amplified under multi-scale features, and massive at the manipulation border, we formulate the answer to the former question as building a ViT with high-resolution capacity, multi-scale feature extraction capability, and manipulation edge supervision that could converge with a small amount of data. We term this simple but effective ViT paradigm IML-ViT, which has significant potential to become a new benchmark for IML. Extensive experiments on five benchmark datasets verified our model outperforms the state-of-the-art manipulation localization methods.Code and models are available at https://github.com/SunnyHaze/IML-ViT.
ViT-Lens: Towards Omni-modal Representations
Though the success of CLIP-based training recipes in vision-language models, their scalability to more modalities (e.g., 3D, audio, etc.) is limited to large-scale data, which is expensive or even inapplicable for rare modalities. In this paper, we present ViT-Lens that facilitates efficient omni-modal representation learning by perceiving novel modalities with a pretrained ViT and aligning to a pre-defined space. Specifically, the modality-specific lens is tuned to project multimodal signals to the shared embedding space, which are then processed by a strong ViT that carries pre-trained image knowledge. The encoded multimodal representations are optimized toward aligning with the modal-independent space, pre-defined by off-the-shelf foundation models. A well-trained lens with a ViT backbone has the potential to serve as one of these foundation models, supervising the learning of subsequent modalities. ViT-Lens provides a unified solution for representation learning of increasing modalities with two appealing benefits: (i) Exploiting the pretrained ViT across tasks and domains effectively with efficient data regime; (ii) Emergent downstream capabilities of novel modalities are demonstrated due to the modality alignment space. We evaluate ViT-Lens in the context of 3D as an initial verification. In zero-shot 3D classification, ViT-Lens achieves substantial improvements over previous state-of-the-art, showing 52.0% accuracy on Objaverse-LVIS, 87.4% on ModelNet40, and 60.6% on ScanObjectNN. Furthermore, we enable zero-shot 3D question-answering by simply integrating the trained 3D lens into the InstructBLIP model without any adaptation. We will release the results of ViT-Lens on more modalities in the near future.
HTR-VT: Handwritten Text Recognition with Vision Transformer
We explore the application of Vision Transformer (ViT) for handwritten text recognition. The limited availability of labeled data in this domain poses challenges for achieving high performance solely relying on ViT. Previous transformer-based models required external data or extensive pre-training on large datasets to excel. To address this limitation, we introduce a data-efficient ViT method that uses only the encoder of the standard transformer. We find that incorporating a Convolutional Neural Network (CNN) for feature extraction instead of the original patch embedding and employ Sharpness-Aware Minimization (SAM) optimizer to ensure that the model can converge towards flatter minima and yield notable enhancements. Furthermore, our introduction of the span mask technique, which masks interconnected features in the feature map, acts as an effective regularizer. Empirically, our approach competes favorably with traditional CNN-based models on small datasets like IAM and READ2016. Additionally, it establishes a new benchmark on the LAM dataset, currently the largest dataset with 19,830 training text lines. The code is publicly available at: https://github.com/YutingLi0606/HTR-VT.
MetaFormer: High-fidelity Metalens Imaging via Aberration Correcting Transformers
Metalens is an emerging optical system with an irreplaceable merit in that it can be manufactured in ultra-thin and compact sizes, which shows great promise of various applications such as medical imaging and augmented/virtual reality (AR/VR). Despite its advantage in miniaturization, its practicality is constrained by severe aberrations and distortions, which significantly degrade the image quality. Several previous arts have attempted to address different types of aberrations, yet most of them are mainly designed for the traditional bulky lens and not convincing enough to remedy harsh aberrations of the metalens. While there have existed aberration correction methods specifically for metalens, they still fall short of restoration quality. In this work, we propose MetaFormer, an aberration correction framework for metalens-captured images, harnessing Vision Transformers (ViT) that has shown remarkable restoration performance in diverse image restoration tasks. Specifically, we devise a Multiple Adaptive Filters Guidance (MAFG), where multiple Wiener filters enrich the degraded input images with various noise-detail balances, enhancing output restoration quality. In addition, we introduce a Spatial and Transposed self-Attention Fusion (STAF) module, which aggregates features from spatial self-attention and transposed self-attention modules to further ameliorate aberration correction. We conduct extensive experiments, including correcting aberrated images and videos, and clean 3D reconstruction from the degraded images. The proposed method outperforms the previous arts by a significant margin. We further fabricate a metalens and verify the practicality of MetaFormer by restoring the images captured with the manufactured metalens in the wild. Code and pre-trained models are available at https://benhenryl.github.io/MetaFormer
RepQ-ViT: Scale Reparameterization for Post-Training Quantization of Vision Transformers
Post-training quantization (PTQ), which only requires a tiny dataset for calibration without end-to-end retraining, is a light and practical model compression technique. Recently, several PTQ schemes for vision transformers (ViTs) have been presented; unfortunately, they typically suffer from non-trivial accuracy degradation, especially in low-bit cases. In this paper, we propose RepQ-ViT, a novel PTQ framework for ViTs based on quantization scale reparameterization, to address the above issues. RepQ-ViT decouples the quantization and inference processes, where the former employs complex quantizers and the latter employs scale-reparameterized simplified quantizers. This ensures both accurate quantization and efficient inference, which distinguishes it from existing approaches that sacrifice quantization performance to meet the target hardware. More specifically, we focus on two components with extreme distributions: post-LayerNorm activations with severe inter-channel variation and post-Softmax activations with power-law features, and initially apply channel-wise quantization and log2 quantization, respectively. Then, we reparameterize the scales to hardware-friendly layer-wise quantization and log2 quantization for inference, with only slight accuracy or computational costs. Extensive experiments are conducted on multiple vision tasks with different model variants, proving that RepQ-ViT, without hyperparameters and expensive reconstruction procedures, can outperform existing strong baselines and encouragingly improve the accuracy of 4-bit PTQ of ViTs to a usable level. Code is available at https://github.com/zkkli/RepQ-ViT.
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet
Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, e.g., the Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-ViT), which incorporates 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter count and MACs of vanilla ViT by half, while achieving more than 3.0\% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3\% top1 accuracy in image resolution 384times384 on ImageNet. (Code: https://github.com/yitu-opensource/T2T-ViT)
Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach
The rise of AI-generated image editing tools has made localized forgeries increasingly realistic, posing challenges for visual content integrity. Although recent efforts have explored localized AIGC detection, existing datasets predominantly focus on object-level forgeries while overlooking broader scene edits in regions such as sky or ground. To address these limitations, we introduce BR-Gen, a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations, which are based on semantic calibration to ensure high-quality samples. BR-Gen is constructed through a fully automated Perception-Creation-Evaluation pipeline to ensure semantic coherence and visual realism. In addition, we further propose NFA-ViT, a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries by amplifying forgery-related features across the entire image. NFA-ViT mines heterogeneous regions in images, i.e., potential edited areas, by noise fingerprints. Subsequently, attention mechanism is introduced to compel the interaction between normal and abnormal features, thereby propagating the generalization traces throughout the entire image, allowing subtle forgeries to influence a broader context and improving overall detection robustness. Extensive experiments demonstrate that BR-Gen constructs entirely new scenarios that are not covered by existing methods. Take a step further, NFA-ViT outperforms existing methods on BR-Gen and generalizes well across current benchmarks. All data and codes are available at https://github.com/clpbc/BR-Gen.
TinyViT: Fast Pretraining Distillation for Small Vision Transformers
Vision transformer (ViT) recently has drawn great attention in computer vision due to its remarkable model capability. However, most prevailing ViT models suffer from huge number of parameters, restricting their applicability on devices with limited resources. To alleviate this issue, we propose TinyViT, a new family of tiny and efficient small vision transformers pretrained on large-scale datasets with our proposed fast distillation framework. The central idea is to transfer knowledge from large pretrained models to small ones, while enabling small models to get the dividends of massive pretraining data. More specifically, we apply distillation during pretraining for knowledge transfer. The logits of large teacher models are sparsified and stored in disk in advance to save the memory cost and computation overheads. The tiny student transformers are automatically scaled down from a large pretrained model with computation and parameter constraints. Comprehensive experiments demonstrate the efficacy of TinyViT. It achieves a top-1 accuracy of 84.8% on ImageNet-1k with only 21M parameters, being comparable to Swin-B pretrained on ImageNet-21k while using 4.2 times fewer parameters. Moreover, increasing image resolutions, TinyViT can reach 86.5% accuracy, being slightly better than Swin-L while using only 11% parameters. Last but not the least, we demonstrate a good transfer ability of TinyViT on various downstream tasks. Code and models are available at https://github.com/microsoft/Cream/tree/main/TinyViT.
MiniViT: Compressing Vision Transformers with Weight Multiplexing
Vision Transformer (ViT) models have recently drawn much attention in computer vision due to their high model capability. However, ViT models suffer from huge number of parameters, restricting their applicability on devices with limited memory. To alleviate this problem, we propose MiniViT, a new compression framework, which achieves parameter reduction in vision transformers while retaining the same performance. The central idea of MiniViT is to multiplex the weights of consecutive transformer blocks. More specifically, we make the weights shared across layers, while imposing a transformation on the weights to increase diversity. Weight distillation over self-attention is also applied to transfer knowledge from large-scale ViT models to weight-multiplexed compact models. Comprehensive experiments demonstrate the efficacy of MiniViT, showing that it can reduce the size of the pre-trained Swin-B transformer by 48\%, while achieving an increase of 1.0\% in Top-1 accuracy on ImageNet. Moreover, using a single-layer of parameters, MiniViT is able to compress DeiT-B by 9.7 times from 86M to 9M parameters, without seriously compromising the performance. Finally, we verify the transferability of MiniViT by reporting its performance on downstream benchmarks. Code and models are available at here.
Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis
Vision Transformers (ViT)s have shown great performance in self-supervised learning of global and local representations that can be transferred to downstream applications. Inspired by these results, we introduce a novel self-supervised learning framework with tailored proxy tasks for medical image analysis. Specifically, we propose: (i) a new 3D transformer-based model, dubbed Swin UNEt TRansformers (Swin UNETR), with a hierarchical encoder for self-supervised pre-training; (ii) tailored proxy tasks for learning the underlying pattern of human anatomy. We demonstrate successful pre-training of the proposed model on 5,050 publicly available computed tomography (CT) images from various body organs. The effectiveness of our approach is validated by fine-tuning the pre-trained models on the Beyond the Cranial Vault (BTCV) Segmentation Challenge with 13 abdominal organs and segmentation tasks from the Medical Segmentation Decathlon (MSD) dataset. Our model is currently the state-of-the-art (i.e. ranked 1st) on the public test leaderboards of both MSD and BTCV datasets. Code: https://monai.io/research/swin-unetr
Speed-up of Vision Transformer Models by Attention-aware Token Filtering
Vision Transformer (ViT) models have made breakthroughs in image embedding extraction, which provide state-of-the-art performance in tasks such as zero-shot image classification. However, the models suffer from a high computational burden. In this paper, we propose a novel speed-up method for ViT models called Attention-aware Token Filtering (ATF). ATF consists of two main ideas: a novel token filtering module and a filtering strategy. The token filtering module is introduced between a tokenizer and a transformer encoder of the ViT model, without modifying or fine-tuning of the transformer encoder. The module filters out tokens inputted to the encoder so that it keeps tokens in regions of specific object types dynamically and keeps tokens in regions that statically receive high attention in the transformer encoder. This filtering strategy maintains task accuracy while filtering out tokens inputted to the transformer encoder. Evaluation results on retrieval tasks show that ATF provides 2.8times speed-up to a ViT model, SigLIP, while maintaining the retrieval recall rate.
InterFormer: Real-time Interactive Image Segmentation
Interactive image segmentation enables annotators to efficiently perform pixel-level annotation for segmentation tasks. However, the existing interactive segmentation pipeline suffers from inefficient computations of interactive models because of the following two issues. First, annotators' later click is based on models' feedback of annotators' former click. This serial interaction is unable to utilize model's parallelism capabilities. Second, in each interaction step, the model handles the invariant image along with the sparse variable clicks, resulting in a process that's highly repetitive and redundant. For efficient computations, we propose a method named InterFormer that follows a new pipeline to address these issues. InterFormer extracts and preprocesses the computationally time-consuming part i.e. image processing from the existing process. Specifically, InterFormer employs a large vision transformer (ViT) on high-performance devices to preprocess images in parallel, and then uses a lightweight module called interactive multi-head self attention (I-MSA) for interactive segmentation. Furthermore, the I-MSA module's deployment on low-power devices extends the practical application of interactive segmentation. The I-MSA module utilizes the preprocessed features to efficiently response to the annotator inputs in real-time. The experiments on several datasets demonstrate the effectiveness of InterFormer, which outperforms previous interactive segmentation models in terms of computational efficiency and segmentation quality, achieve real-time high-quality interactive segmentation on CPU-only devices. The code is available at https://github.com/YouHuang67/InterFormer.
Exploring Plain Vision Transformer Backbones for Object Detection
We explore the plain, non-hierarchical Vision Transformer (ViT) as a backbone network for object detection. This design enables the original ViT architecture to be fine-tuned for object detection without needing to redesign a hierarchical backbone for pre-training. With minimal adaptations for fine-tuning, our plain-backbone detector can achieve competitive results. Surprisingly, we observe: (i) it is sufficient to build a simple feature pyramid from a single-scale feature map (without the common FPN design) and (ii) it is sufficient to use window attention (without shifting) aided with very few cross-window propagation blocks. With plain ViT backbones pre-trained as Masked Autoencoders (MAE), our detector, named ViTDet, can compete with the previous leading methods that were all based on hierarchical backbones, reaching up to 61.3 AP_box on the COCO dataset using only ImageNet-1K pre-training. We hope our study will draw attention to research on plain-backbone detectors. Code for ViTDet is available in Detectron2.
Accelerating Transformers with Spectrum-Preserving Token Merging
Increasing the throughput of the Transformer architecture, a foundational component used in numerous state-of-the-art models for vision and language tasks (e.g., GPT, LLaVa), is an important problem in machine learning. One recent and effective strategy is to merge token representations within Transformer models, aiming to reduce computational and memory requirements while maintaining accuracy. Prior works have proposed algorithms based on Bipartite Soft Matching (BSM), which divides tokens into distinct sets and merges the top k similar tokens. However, these methods have significant drawbacks, such as sensitivity to token-splitting strategies and damage to informative tokens in later layers. This paper presents a novel paradigm called PiToMe, which prioritizes the preservation of informative tokens using an additional metric termed the energy score. This score identifies large clusters of similar tokens as high-energy, indicating potential candidates for merging, while smaller (unique and isolated) clusters are considered as low-energy and preserved. Experimental findings demonstrate that PiToMe saved from 40-60\% FLOPs of the base models while exhibiting superior off-the-shelf performance on image classification (0.5\% average performance drop of ViT-MAE-H compared to 2.6\% as baselines), image-text retrieval (0.3\% average performance drop of CLIP on Flickr30k compared to 4.5\% as others), and analogously in visual questions answering with LLaVa-7B. Furthermore, PiToMe is theoretically shown to preserve intrinsic spectral properties of the original token space under mild conditions
MVP: Meta Visual Prompt Tuning for Few-Shot Remote Sensing Image Scene Classification
Vision Transformer (ViT) models have recently emerged as powerful and versatile models for various visual tasks. Recently, a work called PMF has achieved promising results in few-shot image classification by utilizing pre-trained vision transformer models. However, PMF employs full fine-tuning for learning the downstream tasks, leading to significant overfitting and storage issues, especially in the remote sensing domain. In order to tackle these issues, we turn to the recently proposed parameter-efficient tuning methods, such as VPT, which updates only the newly added prompt parameters while keeping the pre-trained backbone frozen. Inspired by VPT, we propose the Meta Visual Prompt Tuning (MVP) method. Specifically, we integrate the VPT method into the meta-learning framework and tailor it to the remote sensing domain, resulting in an efficient framework for Few-Shot Remote Sensing Scene Classification (FS-RSSC). Furthermore, we introduce a novel data augmentation strategy based on patch embedding recombination to enhance the representation and diversity of scenes for classification purposes. Experiment results on the FS-RSSC benchmark demonstrate the superior performance of the proposed MVP over existing methods in various settings, such as various-way-various-shot, various-way-one-shot, and cross-domain adaptation.
Disjoint Masking with Joint Distillation for Efficient Masked Image Modeling
Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.
The Missing Point in Vision Transformers for Universal Image Segmentation
Image segmentation remains a challenging task in computer vision, demanding robust mask generation and precise classification. Recent mask-based approaches yield high-quality masks by capturing global context. However, accurately classifying these masks, especially in the presence of ambiguous boundaries and imbalanced class distributions, remains an open challenge. In this work, we introduce ViT-P, a novel two-stage segmentation framework that decouples mask generation from classification. The first stage employs a proposal generator to produce class-agnostic mask proposals, while the second stage utilizes a point-based classification model built on the Vision Transformer (ViT) to refine predictions by focusing on mask central points. ViT-P serves as a pre-training-free adapter, allowing the integration of various pre-trained vision transformers without modifying their architecture, ensuring adaptability to dense prediction tasks. Furthermore, we demonstrate that coarse and bounding box annotations can effectively enhance classification without requiring additional training on fine annotation datasets, reducing annotation costs while maintaining strong performance. Extensive experiments across COCO, ADE20K, and Cityscapes datasets validate the effectiveness of ViT-P, achieving state-of-the-art results with 54.0 PQ on ADE20K panoptic segmentation, 87.4 mIoU on Cityscapes semantic segmentation, and 63.6 mIoU on ADE20K semantic segmentation. The code and pretrained models are available at: https://github.com/sajjad-sh33/ViT-P}{https://github.com/sajjad-sh33/ViT-P.
RapidNet: Multi-Level Dilated Convolution Based Mobile Backbone
Vision transformers (ViTs) have dominated computer vision in recent years. However, ViTs are computationally expensive and not well suited for mobile devices; this led to the prevalence of convolutional neural network (CNN) and ViT-based hybrid models for mobile vision applications. Recently, Vision GNN (ViG) and CNN hybrid models have also been proposed for mobile vision tasks. However, all of these methods remain slower compared to pure CNN-based models. In this work, we propose Multi-Level Dilated Convolutions to devise a purely CNN-based mobile backbone. Using Multi-Level Dilated Convolutions allows for a larger theoretical receptive field than standard convolutions. Different levels of dilation also allow for interactions between the short-range and long-range features in an image. Experiments show that our proposed model outperforms state-of-the-art (SOTA) mobile CNN, ViT, ViG, and hybrid architectures in terms of accuracy and/or speed on image classification, object detection, instance segmentation, and semantic segmentation. Our fastest model, RapidNet-Ti, achieves 76.3\% top-1 accuracy on ImageNet-1K with 0.9 ms inference latency on an iPhone 13 mini NPU, which is faster and more accurate than MobileNetV2x1.4 (74.7\% top-1 with 1.0 ms latency). Our work shows that pure CNN architectures can beat SOTA hybrid and ViT models in terms of accuracy and speed when designed properly.
Convolutional Vision Transformer for Cosmology Parameter Inference
Parameter inference is a crucial task in modern cosmology that requires accurate and fast computational methods to handle the high precision and volume of observational datasets. In this study, we explore a hybrid vision transformer, the Convolution vision Transformer (CvT), which combines the benefits of vision transformers (ViTs) and convolutional neural networks (CNNs). We use this approach to infer the Omega_m and sigma_8 cosmological parameters from simulated dark matter and halo fields. Our experiments indicate that the constraints on Omega_m and sigma_8 obtained using CvT are better than ViT and CNN, using either dark matter or halo fields. For CvT, pretraining on dark matter fields proves advantageous for improving constraints using halo fields compared to training a model from the beginning. However, ViT and CNN do not show these benefits. The CvT is more efficient than ViT since, despite having more parameters, it requires a training time similar to that of ViT and has similar inference times. The code is available at https://github.com/Yash-10/cvt-cosmo-inference/.
HIRI-ViT: Scaling Vision Transformer with High Resolution Inputs
The hybrid deep models of Vision Transformer (ViT) and Convolution Neural Network (CNN) have emerged as a powerful class of backbones for vision tasks. Scaling up the input resolution of such hybrid backbones naturally strengthes model capacity, but inevitably suffers from heavy computational cost that scales quadratically. Instead, we present a new hybrid backbone with HIgh-Resolution Inputs (namely HIRI-ViT), that upgrades prevalent four-stage ViT to five-stage ViT tailored for high-resolution inputs. HIRI-ViT is built upon the seminal idea of decomposing the typical CNN operations into two parallel CNN branches in a cost-efficient manner. One high-resolution branch directly takes primary high-resolution features as inputs, but uses less convolution operations. The other low-resolution branch first performs down-sampling and then utilizes more convolution operations over such low-resolution features. Experiments on both recognition task (ImageNet-1K dataset) and dense prediction tasks (COCO and ADE20K datasets) demonstrate the superiority of HIRI-ViT. More remarkably, under comparable computational cost (sim5.0 GFLOPs), HIRI-ViT achieves to-date the best published Top-1 accuracy of 84.3% on ImageNet with 448times448 inputs, which absolutely improves 83.4% of iFormer-S by 0.9% with 224times224 inputs.
MOR-VIT: Efficient Vision Transformer with Mixture-of-Recursions
Vision Transformers (ViTs) have achieved remarkable success in image recognition, yet standard ViT architectures are hampered by substantial parameter redundancy and high computational cost, limiting their practical deployment. While recent efforts on efficient ViTs primarily focus on static model compression or token-level sparsification, they remain constrained by fixed computational depth for all tokens. In this work, we present MoR-ViT, a novel vision transformer framework that, for the first time, incorporates a token-level dynamic recursion mechanism inspired by the Mixture-of-Recursions (MoR) paradigm. This approach enables each token to adaptively determine its processing depth, yielding a flexible and input-dependent allocation of computational resources. Extensive experiments on ImageNet-1K and transfer benchmarks demonstrate that MoR-ViT not only achieves state-of-the-art accuracy with up to 70% parameter reduction and 2.5x inference acceleration, but also outperforms leading efficient ViT baselines such as DynamicViT and TinyViT under comparable conditions. These results establish dynamic recursion as an effective strategy for efficient vision transformers and open new avenues for scalable and deployable deep learning models in real-world scenarios.
Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data
Geospatial raster data, such as that collected by satellite-based imaging systems at different times and spectral bands, hold immense potential for enabling a wide range of high-impact applications. This potential stems from the rich information that is spatially and temporally contextualized across multiple channels and sensing modalities. Recent work has adapted existing self-supervised learning approaches for such geospatial data. However, they fall short of scalable model architectures, leading to inflexibility and computational inefficiencies when faced with an increasing number of channels and modalities. To address these limitations, we introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations: i) the LESS Attention Block that approximates high-dimensional spatial-spectral attention through Kronecker's product of the low-dimensional spatial and spectral attention components; ii) the Continuous Positional-Channel Embedding Layer that preserves both the continuity and physical characteristics of each spatial-spectral patch; and iii) the Perception Field Mask that exploits local spatial dependencies by constraining attention to neighboring patches. To evaluate the proposed innovations, we construct GFM-Bench, which serves as a comprehensive benchmark for such geospatial raster data. We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies. Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models while outperforming them on cross-satellite generalization tasks with higher computational efficiency. The flexibility and extensibility of our framework make it a promising direction for future geospatial data analysis tasks that involve a wide range of modalities and channels.
CLIPer: Hierarchically Improving Spatial Representation of CLIP for Open-Vocabulary Semantic Segmentation
Contrastive Language-Image Pre-training (CLIP) exhibits strong zero-shot classification ability on various image-level tasks, leading to the research to adapt CLIP for pixel-level open-vocabulary semantic segmentation without additional training. The key is to improve spatial representation of image-level CLIP, such as replacing self-attention map at last layer with self-self attention map or vision foundation model based attention map. In this paper, we present a novel hierarchical framework, named CLIPer, that hierarchically improves spatial representation of CLIP. The proposed CLIPer includes an early-layer fusion module and a fine-grained compensation module. We observe that, the embeddings and attention maps at early layers can preserve spatial structural information. Inspired by this, we design the early-layer fusion module to generate segmentation map with better spatial coherence. Afterwards, we employ a fine-grained compensation module to compensate the local details using the self-attention maps of diffusion model. We conduct the experiments on seven segmentation datasets. Our proposed CLIPer achieves the state-of-the-art performance on these datasets. For instance, using ViT-L, CLIPer has the mIoU of 69.8% and 43.3% on VOC and COCO Object, outperforming ProxyCLIP by 9.2% and 4.1% respectively.
Token Contrast for Weakly-Supervised Semantic Segmentation
Weakly-Supervised Semantic Segmentation (WSSS) using image-level labels typically utilizes Class Activation Map (CAM) to generate the pseudo labels. Limited by the local structure perception of CNN, CAM usually cannot identify the integral object regions. Though the recent Vision Transformer (ViT) can remedy this flaw, we observe it also brings the over-smoothing issue, \ie, the final patch tokens incline to be uniform. In this work, we propose Token Contrast (ToCo) to address this issue and further explore the virtue of ViT for WSSS. Firstly, motivated by the observation that intermediate layers in ViT can still retain semantic diversity, we designed a Patch Token Contrast module (PTC). PTC supervises the final patch tokens with the pseudo token relations derived from intermediate layers, allowing them to align the semantic regions and thus yield more accurate CAM. Secondly, to further differentiate the low-confidence regions in CAM, we devised a Class Token Contrast module (CTC) inspired by the fact that class tokens in ViT can capture high-level semantics. CTC facilitates the representation consistency between uncertain local regions and global objects by contrasting their class tokens. Experiments on the PASCAL VOC and MS COCO datasets show the proposed ToCo can remarkably surpass other single-stage competitors and achieve comparable performance with state-of-the-art multi-stage methods. Code is available at https://github.com/rulixiang/ToCo.
Mantis: Lightweight Calibrated Foundation Model for User-Friendly Time Series Classification
In recent years, there has been increasing interest in developing foundation models for time series data that can generalize across diverse downstream tasks. While numerous forecasting-oriented foundation models have been introduced, there is a notable scarcity of models tailored for time series classification. To address this gap, we present Mantis, a new open-source foundation model for time series classification based on the Vision Transformer (ViT) architecture that has been pre-trained using a contrastive learning approach. Our experimental results show that Mantis outperforms existing foundation models both when the backbone is frozen and when fine-tuned, while achieving the lowest calibration error. In addition, we propose several adapters to handle the multivariate setting, reducing memory requirements and modeling channel interdependence.
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Although using convolutional neural networks (CNNs) as backbones achieves great successes in computer vision, this work investigates a simple backbone network useful for many dense prediction tasks without convolutions. Unlike the recently-proposed Transformer model (e.g., ViT) that is specially designed for image classification, we propose Pyramid Vision Transformer~(PVT), which overcomes the difficulties of porting Transformer to various dense prediction tasks. PVT has several merits compared to prior arts. (1) Different from ViT that typically has low-resolution outputs and high computational and memory cost, PVT can be not only trained on dense partitions of the image to achieve high output resolution, which is important for dense predictions but also using a progressive shrinking pyramid to reduce computations of large feature maps. (2) PVT inherits the advantages from both CNN and Transformer, making it a unified backbone in various vision tasks without convolutions by simply replacing CNN backbones. (3) We validate PVT by conducting extensive experiments, showing that it boosts the performance of many downstream tasks, e.g., object detection, semantic, and instance segmentation. For example, with a comparable number of parameters, RetinaNet+PVT achieves 40.4 AP on the COCO dataset, surpassing RetinNet+ResNet50 (36.3 AP) by 4.1 absolute AP. We hope PVT could serve as an alternative and useful backbone for pixel-level predictions and facilitate future researches. Code is available at https://github.com/whai362/PVT.
Deepfake Video Detection Using Convolutional Vision Transformer
The rapid advancement of deep learning models that can generate and synthesis hyper-realistic videos known as Deepfakes and their ease of access to the general public have raised concern from all concerned bodies to their possible malicious intent use. Deep learning techniques can now generate faces, swap faces between two subjects in a video, alter facial expressions, change gender, and alter facial features, to list a few. These powerful video manipulation methods have potential use in many fields. However, they also pose a looming threat to everyone if used for harmful purposes such as identity theft, phishing, and scam. In this work, we propose a Convolutional Vision Transformer for the detection of Deepfakes. The Convolutional Vision Transformer has two components: Convolutional Neural Network (CNN) and Vision Transformer (ViT). The CNN extracts learnable features while the ViT takes in the learned features as input and categorizes them using an attention mechanism. We trained our model on the DeepFake Detection Challenge Dataset (DFDC) and have achieved 91.5 percent accuracy, an AUC value of 0.91, and a loss value of 0.32. Our contribution is that we have added a CNN module to the ViT architecture and have achieved a competitive result on the DFDC dataset.
Hardwiring ViT Patch Selectivity into CNNs using Patch Mixing
Vision transformers (ViTs) have significantly changed the computer vision landscape and have periodically exhibited superior performance in vision tasks compared to convolutional neural networks (CNNs). Although the jury is still out on which model type is superior, each has unique inductive biases that shape their learning and generalization performance. For example, ViTs have interesting properties with respect to early layer non-local feature dependence, as well as self-attention mechanisms which enhance learning flexibility, enabling them to ignore out-of-context image information more effectively. We hypothesize that this power to ignore out-of-context information (which we name patch selectivity), while integrating in-context information in a non-local manner in early layers, allows ViTs to more easily handle occlusion. In this study, our aim is to see whether we can have CNNs simulate this ability of patch selectivity by effectively hardwiring this inductive bias using Patch Mixing data augmentation, which consists of inserting patches from another image onto a training image and interpolating labels between the two image classes. Specifically, we use Patch Mixing to train state-of-the-art ViTs and CNNs, assessing its impact on their ability to ignore out-of-context patches and handle natural occlusions. We find that ViTs do not improve nor degrade when trained using Patch Mixing, but CNNs acquire new capabilities to ignore out-of-context information and improve on occlusion benchmarks, leaving us to conclude that this training method is a way of simulating in CNNs the abilities that ViTs already possess. We will release our Patch Mixing implementation and proposed datasets for public use. Project page: https://arielnlee.github.io/PatchMixing/
MIPHEI-ViT: Multiplex Immunofluorescence Prediction from H&E Images using ViT Foundation Models
Histopathological analysis is a cornerstone of cancer diagnosis, with Hematoxylin and Eosin (H&E) staining routinely acquired for every patient to visualize cell morphology and tissue architecture. On the other hand, multiplex immunofluorescence (mIF) enables more precise cell type identification via proteomic markers, but has yet to achieve widespread clinical adoption due to cost and logistical constraints. To bridge this gap, we introduce MIPHEI (Multiplex Immunofluorescence Prediction from H&E), a U-Net-inspired architecture that integrates state-of-the-art ViT foundation models as encoders to predict mIF signals from H&E images. MIPHEI targets a comprehensive panel of markers spanning nuclear content, immune lineages (T cells, B cells, myeloid), epithelium, stroma, vasculature, and proliferation. We train our model using the publicly available ORION dataset of restained H&E and mIF images from colorectal cancer tissue, and validate it on two independent datasets. MIPHEI achieves accurate cell-type classification from H&E alone, with F1 scores of 0.88 for Pan-CK, 0.57 for CD3e, 0.56 for SMA, 0.36 for CD68, and 0.30 for CD20, substantially outperforming both a state-of-the-art baseline and a random classifier for most markers. Our results indicate that our model effectively captures the complex relationships between nuclear morphologies in their tissue context, as visible in H&E images and molecular markers defining specific cell types. MIPHEI offers a promising step toward enabling cell-type-aware analysis of large-scale H&E datasets, in view of uncovering relationships between spatial cellular organization and patient outcomes.
APHQ-ViT: Post-Training Quantization with Average Perturbation Hessian Based Reconstruction for Vision Transformers
Vision Transformers (ViTs) have become one of the most commonly used backbones for vision tasks. Despite their remarkable performance, they often suffer significant accuracy drops when quantized for practical deployment, particularly by post-training quantization (PTQ) under ultra-low bits. Recently, reconstruction-based PTQ methods have shown promising performance in quantizing Convolutional Neural Networks (CNNs). However, they fail when applied to ViTs, primarily due to the inaccurate estimation of output importance and the substantial accuracy degradation in quantizing post-GELU activations. To address these issues, we propose APHQ-ViT, a novel PTQ approach based on importance estimation with Average Perturbation Hessian (APH). Specifically, we first thoroughly analyze the current approximation approaches with Hessian loss, and propose an improved average perturbation Hessian loss. To deal with the quantization of the post-GELU activations, we design an MLP Reconstruction (MR) method by replacing the GELU function in MLP with ReLU and reconstructing it by the APH loss on a small unlabeled calibration set. Extensive experiments demonstrate that APHQ-ViT using linear quantizers outperforms existing PTQ methods by substantial margins in 3-bit and 4-bit across different vision tasks. The source code is available at https://github.com/GoatWu/APHQ-ViT.
SAG-ViT: A Scale-Aware, High-Fidelity Patching Approach with Graph Attention for Vision Transformers
Image classification is a computer vision task where a model analyzes an image to categorize it into a specific label. Vision Transformers (ViT) improve this task by leveraging self-attention to capture complex patterns and long range relationships between image patches. However, a key challenge for ViTs is efficiently incorporating multiscale feature representations, which is inherent in CNNs through their hierarchical structure. In this paper, we introduce the Scale-Aware Graph Attention Vision Transformer (SAG-ViT), a novel framework that addresses this challenge by integrating multi-scale features. Using EfficientNet as a backbone, the model extracts multi-scale feature maps, which are divided into patches to preserve semantic information. These patches are organized into a graph based on spatial and feature similarities, with a Graph Attention Network (GAT) refining the node embeddings. Finally, a Transformer encoder captures long-range dependencies and complex interactions. The SAG-ViT is evaluated on benchmark datasets, demonstrating its effectiveness in enhancing image classification performance.
ChAda-ViT : Channel Adaptive Attention for Joint Representation Learning of Heterogeneous Microscopy Images
Unlike color photography images, which are consistently encoded into RGB channels, biological images encompass various modalities, where the type of microscopy and the meaning of each channel varies with each experiment. Importantly, the number of channels can range from one to a dozen and their correlation is often comparatively much lower than RGB, as each of them brings specific information content. This aspect is largely overlooked by methods designed out of the bioimage field, and current solutions mostly focus on intra-channel spatial attention, often ignoring the relationship between channels, yet crucial in most biological applications. Importantly, the variable channel type and count prevent the projection of several experiments to a unified representation for large scale pre-training. In this study, we propose ChAda-ViT, a novel Channel Adaptive Vision Transformer architecture employing an Inter-Channel Attention mechanism on images with an arbitrary number, order and type of channels. We also introduce IDRCell100k, a bioimage dataset with a rich set of 79 experiments covering 7 microscope modalities, with a multitude of channel types, and channel counts varying from 1 to 10 per experiment. Our proposed architecture, trained in a self-supervised manner, outperforms existing approaches in several biologically relevant downstream tasks. Additionally, it can be used to bridge the gap for the first time between assays with different microscopes, channel numbers or types by embedding various image and experimental modalities into a unified biological image representation. The latter should facilitate interdisciplinary studies and pave the way for better adoption of deep learning in biological image-based analyses. Code and Data to be released soon.
Derm-T2IM: Harnessing Synthetic Skin Lesion Data via Stable Diffusion Models for Enhanced Skin Disease Classification using ViT and CNN
This study explores the utilization of Dermatoscopic synthetic data generated through stable diffusion models as a strategy for enhancing the robustness of machine learning model training. Synthetic data generation plays a pivotal role in mitigating challenges associated with limited labeled datasets, thereby facilitating more effective model training. In this context, we aim to incorporate enhanced data transformation techniques by extending the recent success of few-shot learning and a small amount of data representation in text-to-image latent diffusion models. The optimally tuned model is further used for rendering high-quality skin lesion synthetic data with diverse and realistic characteristics, providing a valuable supplement and diversity to the existing training data. We investigate the impact of incorporating newly generated synthetic data into the training pipeline of state-of-art machine learning models, assessing its effectiveness in enhancing model performance and generalization to unseen real-world data. Our experimental results demonstrate the efficacy of the synthetic data generated through stable diffusion models helps in improving the robustness and adaptability of end-to-end CNN and vision transformer models on two different real-world skin lesion datasets.
Fast and accurate object detection in high resolution 4K and 8K video using GPUs
Machine learning has celebrated a lot of achievements on computer vision tasks such as object detection, but the traditionally used models work with relatively low resolution images. The resolution of recording devices is gradually increasing and there is a rising need for new methods of processing high resolution data. We propose an attention pipeline method which uses two staged evaluation of each image or video frame under rough and refined resolution to limit the total number of necessary evaluations. For both stages, we make use of the fast object detection model YOLO v2. We have implemented our model in code, which distributes the work across GPUs. We maintain high accuracy while reaching the average performance of 3-6 fps on 4K video and 2 fps on 8K video.
Your ViT is Secretly an Image Segmentation Model
Vision Transformers (ViTs) have shown remarkable performance and scalability across various computer vision tasks. To apply single-scale ViTs to image segmentation, existing methods adopt a convolutional adapter to generate multi-scale features, a pixel decoder to fuse these features, and a Transformer decoder that uses the fused features to make predictions. In this paper, we show that the inductive biases introduced by these task-specific components can instead be learned by the ViT itself, given sufficiently large models and extensive pre-training. Based on these findings, we introduce the Encoder-only Mask Transformer (EoMT), which repurposes the plain ViT architecture to conduct image segmentation. With large-scale models and pre-training, EoMT obtains a segmentation accuracy similar to state-of-the-art models that use task-specific components. At the same time, EoMT is significantly faster than these methods due to its architectural simplicity, e.g., up to 4x faster with ViT-L. Across a range of model sizes, EoMT demonstrates an optimal balance between segmentation accuracy and prediction speed, suggesting that compute resources are better spent on scaling the ViT itself rather than adding architectural complexity. Code: https://www.tue-mps.org/eomt/.
HyperspectralViTs: General Hyperspectral Models for On-board Remote Sensing
On-board processing of hyperspectral data with machine learning models would enable unprecedented amount of autonomy for a wide range of tasks, for example methane detection or mineral identification. This can enable early warning system and could allow new capabilities such as automated scheduling across constellations of satellites. Classical methods suffer from high false positive rates and previous deep learning models exhibit prohibitive computational requirements. We propose fast and accurate machine learning architectures which support end-to-end training with data of high spectral dimension without relying on hand-crafted products or spectral band compression preprocessing. We evaluate our models on two tasks related to hyperspectral data processing. With our proposed general architectures, we improve the F1 score of the previous methane detection state-of-the-art models by 27% on a newly created synthetic dataset and by 13% on the previously released large benchmark dataset. We also demonstrate that training models on the synthetic dataset improves performance of models finetuned on the dataset of real events by 6.9% in F1 score in contrast with training from scratch. On a newly created dataset for mineral identification, our models provide 3.5% improvement in the F1 score in contrast to the default versions of the models. With our proposed models we improve the inference speed by 85% in contrast to previous classical and deep learning approaches by removing the dependency on classically computed features. With our architecture, one capture from the EMIT sensor can be processed within 30 seconds on realistic proxy of the ION-SCV 004 satellite.
ViT-TTS: Visual Text-to-Speech with Scalable Diffusion Transformer
Text-to-speech(TTS) has undergone remarkable improvements in performance, particularly with the advent of Denoising Diffusion Probabilistic Models (DDPMs). However, the perceived quality of audio depends not solely on its content, pitch, rhythm, and energy, but also on the physical environment. In this work, we propose ViT-TTS, the first visual TTS model with scalable diffusion transformers. ViT-TTS complement the phoneme sequence with the visual information to generate high-perceived audio, opening up new avenues for practical applications of AR and VR to allow a more immersive and realistic audio experience. To mitigate the data scarcity in learning visual acoustic information, we 1) introduce a self-supervised learning framework to enhance both the visual-text encoder and denoiser decoder; 2) leverage the diffusion transformer scalable in terms of parameters and capacity to learn visual scene information. Experimental results demonstrate that ViT-TTS achieves new state-of-the-art results, outperforming cascaded systems and other baselines regardless of the visibility of the scene. With low-resource data (1h, 2h, 5h), ViT-TTS achieves comparative results with rich-resource baselines.~Audio samples are available at \url{https://ViT-TTS.github.io/.}
DualToken-ViT: Position-aware Efficient Vision Transformer with Dual Token Fusion
Self-attention-based vision transformers (ViTs) have emerged as a highly competitive architecture in computer vision. Unlike convolutional neural networks (CNNs), ViTs are capable of global information sharing. With the development of various structures of ViTs, ViTs are increasingly advantageous for many vision tasks. However, the quadratic complexity of self-attention renders ViTs computationally intensive, and their lack of inductive biases of locality and translation equivariance demands larger model sizes compared to CNNs to effectively learn visual features. In this paper, we propose a light-weight and efficient vision transformer model called DualToken-ViT that leverages the advantages of CNNs and ViTs. DualToken-ViT effectively fuses the token with local information obtained by convolution-based structure and the token with global information obtained by self-attention-based structure to achieve an efficient attention structure. In addition, we use position-aware global tokens throughout all stages to enrich the global information, which further strengthening the effect of DualToken-ViT. Position-aware global tokens also contain the position information of the image, which makes our model better for vision tasks. We conducted extensive experiments on image classification, object detection and semantic segmentation tasks to demonstrate the effectiveness of DualToken-ViT. On the ImageNet-1K dataset, our models of different scales achieve accuracies of 75.4% and 79.4% with only 0.5G and 1.0G FLOPs, respectively, and our model with 1.0G FLOPs outperforms LightViT-T using global tokens by 0.7%.
Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios
Due to the complex attention mechanisms and model design, most existing vision Transformers (ViTs) can not perform as efficiently as convolutional neural networks (CNNs) in realistic industrial deployment scenarios, e.g. TensorRT and CoreML. This poses a distinct challenge: Can a visual neural network be designed to infer as fast as CNNs and perform as powerful as ViTs? Recent works have tried to design CNN-Transformer hybrid architectures to address this issue, yet the overall performance of these works is far away from satisfactory. To end these, we propose a next generation vision Transformer for efficient deployment in realistic industrial scenarios, namely Next-ViT, which dominates both CNNs and ViTs from the perspective of latency/accuracy trade-off. In this work, the Next Convolution Block (NCB) and Next Transformer Block (NTB) are respectively developed to capture local and global information with deployment-friendly mechanisms. Then, Next Hybrid Strategy (NHS) is designed to stack NCB and NTB in an efficient hybrid paradigm, which boosts performance in various downstream tasks. Extensive experiments show that Next-ViT significantly outperforms existing CNNs, ViTs and CNN-Transformer hybrid architectures with respect to the latency/accuracy trade-off across various vision tasks. On TensorRT, Next-ViT surpasses ResNet by 5.5 mAP (from 40.4 to 45.9) on COCO detection and 7.7% mIoU (from 38.8% to 46.5%) on ADE20K segmentation under similar latency. Meanwhile, it achieves comparable performance with CSWin, while the inference speed is accelerated by 3.6x. On CoreML, Next-ViT surpasses EfficientFormer by 4.6 mAP (from 42.6 to 47.2) on COCO detection and 3.5% mIoU (from 45.1% to 48.6%) on ADE20K segmentation under similar latency. Our code and models are made public at: https://github.com/bytedance/Next-ViT
ED-ViT: Splitting Vision Transformer for Distributed Inference on Edge Devices
Deep learning models are increasingly deployed on resource-constrained edge devices for real-time data analytics. In recent years, Vision Transformer models and their variants have demonstrated outstanding performance across various computer vision tasks. However, their high computational demands and inference latency pose significant challenges for model deployment on resource-constraint edge devices. To address this issue, we propose a novel Vision Transformer splitting framework, ED-ViT, designed to execute complex models across multiple edge devices efficiently. Specifically, we partition Vision Transformer models into several sub-models, where each sub-model is tailored to handle a specific subset of data classes. To further minimize computation overhead and inference latency, we introduce a class-wise pruning technique that reduces the size of each sub-model. We conduct extensive experiments on five datasets with three model structures, demonstrating that our approach significantly reduces inference latency on edge devices and achieves a model size reduction of up to 28.9 times and 34.1 times, respectively, while maintaining test accuracy comparable to the original Vision Transformer. Additionally, we compare ED-ViT with two state-of-the-art methods that deploy CNN and SNN models on edge devices, evaluating accuracy, inference time, and overall model size. Our comprehensive evaluation underscores the effectiveness of the proposed ED-ViT framework.
An Intermediate Fusion ViT Enables Efficient Text-Image Alignment in Diffusion Models
Diffusion models have been widely used for conditional data cross-modal generation tasks such as text-to-image and text-to-video. However, state-of-the-art models still fail to align the generated visual concepts with high-level semantics in a language such as object count, spatial relationship, etc. We approach this problem from a multimodal data fusion perspective and investigate how different fusion strategies can affect vision-language alignment. We discover that compared to the widely used early fusion of conditioning text in a pretrained image feature space, a specially designed intermediate fusion can: (i) boost text-to-image alignment with improved generation quality and (ii) improve training and inference efficiency by reducing low-rank text-to-image attention calculations. We perform experiments using a text-to-image generation task on the MS-COCO dataset. We compare our intermediate fusion mechanism with the classic early fusion mechanism on two common conditioning methods on a U-shaped ViT backbone. Our intermediate fusion model achieves a higher CLIP Score and lower FID, with 20% reduced FLOPs, and 50% increased training speed compared to a strong U-ViT baseline with an early fusion.
Video OWL-ViT: Temporally-consistent open-world localization in video
We present an architecture and a training recipe that adapts pre-trained open-world image models to localization in videos. Understanding the open visual world (without being constrained by fixed label spaces) is crucial for many real-world vision tasks. Contrastive pre-training on large image-text datasets has recently led to significant improvements for image-level tasks. For more structured tasks involving object localization applying pre-trained models is more challenging. This is particularly true for video tasks, where task-specific data is limited. We show successful transfer of open-world models by building on the OWL-ViT open-vocabulary detection model and adapting it to video by adding a transformer decoder. The decoder propagates object representations recurrently through time by using the output tokens for one frame as the object queries for the next. Our model is end-to-end trainable on video data and enjoys improved temporal consistency compared to tracking-by-detection baselines, while retaining the open-world capabilities of the backbone detector. We evaluate our model on the challenging TAO-OW benchmark and demonstrate that open-world capabilities, learned from large-scale image-text pre-training, can be transferred successfully to open-world localization across diverse videos.
A Generalization of ViT/MLP-Mixer to Graphs
Graph Neural Networks (GNNs) have shown great potential in the field of graph representation learning. Standard GNNs define a local message-passing mechanism which propagates information over the whole graph domain by stacking multiple layers. This paradigm suffers from two major limitations, over-squashing and poor long-range dependencies, that can be solved using global attention but significantly increases the computational cost to quadratic complexity. In this work, we propose an alternative approach to overcome these structural limitations by leveraging the ViT/MLP-Mixer architectures introduced in computer vision. We introduce a new class of GNNs, called Graph ViT/MLP-Mixer, that holds three key properties. First, they capture long-range dependency and mitigate the issue of over-squashing as demonstrated on Long Range Graph Benchmark and TreeNeighbourMatch datasets. Second, they offer better speed and memory efficiency with a complexity linear to the number of nodes and edges, surpassing the related Graph Transformer and expressive GNN models. Third, they show high expressivity in terms of graph isomorphism as they can distinguish at least 3-WL non-isomorphic graphs. We test our architecture on 4 simulated datasets and 7 real-world benchmarks, and show highly competitive results on all of them. The source code is available for reproducibility at: https://github.com/XiaoxinHe/Graph-ViT-MLPMixer.
Combined CNN and ViT features off-the-shelf: Another astounding baseline for recognition
We apply pre-trained architectures, originally developed for the ImageNet Large Scale Visual Recognition Challenge, for periocular recognition. These architectures have demonstrated significant success in various computer vision tasks beyond the ones for which they were designed. This work builds on our previous study using off-the-shelf Convolutional Neural Network (CNN) and extends it to include the more recently proposed Vision Transformers (ViT). Despite being trained for generic object classification, middle-layer features from CNNs and ViTs are a suitable way to recognize individuals based on periocular images. We also demonstrate that CNNs and ViTs are highly complementary since their combination results in boosted accuracy. In addition, we show that a small portion of these pre-trained models can achieve good accuracy, resulting in thinner models with fewer parameters, suitable for resource-limited environments such as mobiles. This efficiency improves if traditional handcrafted features are added as well.
DeiT III: Revenge of the ViT
A Vision Transformer (ViT) is a simple neural architecture amenable to serve several computer vision tasks. It has limited built-in architectural priors, in contrast to more recent architectures that incorporate priors either about the input data or of specific tasks. Recent works show that ViTs benefit from self-supervised pre-training, in particular BerT-like pre-training like BeiT. In this paper, we revisit the supervised training of ViTs. Our procedure builds upon and simplifies a recipe introduced for training ResNet-50. It includes a new simple data-augmentation procedure with only 3 augmentations, closer to the practice in self-supervised learning. Our evaluations on Image classification (ImageNet-1k with and without pre-training on ImageNet-21k), transfer learning and semantic segmentation show that our procedure outperforms by a large margin previous fully supervised training recipes for ViT. It also reveals that the performance of our ViT trained with supervision is comparable to that of more recent architectures. Our results could serve as better baselines for recent self-supervised approaches demonstrated on ViT.
RepViT: Revisiting Mobile CNN From ViT Perspective
Recently, lightweight Vision Transformers (ViTs) demonstrate superior performance and lower latency compared with lightweight Convolutional Neural Networks (CNNs) on resource-constrained mobile devices. This improvement is usually attributed to the multi-head self-attention module, which enables the model to learn global representations. However, the architectural disparities between lightweight ViTs and lightweight CNNs have not been adequately examined. In this study, we revisit the efficient design of lightweight CNNs and emphasize their potential for mobile devices. We incrementally enhance the mobile-friendliness of a standard lightweight CNN, specifically MobileNetV3, by integrating the efficient architectural choices of lightweight ViTs. This ends up with a new family of pure lightweight CNNs, namely RepViT. Extensive experiments show that RepViT outperforms existing state-of-the-art lightweight ViTs and exhibits favorable latency in various vision tasks. On ImageNet, RepViT achieves over 80\% top-1 accuracy with nearly 1ms latency on an iPhone 12, which is the first time for a lightweight model, to the best of our knowledge. Our largest model, RepViT-M3, obtains 81.4\% accuracy with only 1.3ms latency. The code and trained models are available at https://github.com/jameslahm/RepViT.
Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware
Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.
Vision-Language Models for Automated Chest X-ray Interpretation: Leveraging ViT and GPT-2
Radiology plays a pivotal role in modern medicine due to its non-invasive diagnostic capabilities. However, the manual generation of unstructured medical reports is time consuming and prone to errors. It creates a significant bottleneck in clinical workflows. Despite advancements in AI-generated radiology reports, challenges remain in achieving detailed and accurate report generation. In this study we have evaluated different combinations of multimodal models that integrate Computer Vision and Natural Language Processing to generate comprehensive radiology reports. We employed a pretrained Vision Transformer (ViT-B16) and a SWIN Transformer as the image encoders. The BART and GPT-2 models serve as the textual decoders. We used Chest X-ray images and reports from the IU-Xray dataset to evaluate the usability of the SWIN Transformer-BART, SWIN Transformer-GPT-2, ViT-B16-BART and ViT-B16-GPT-2 models for report generation. We aimed at finding the best combination among the models. The SWIN-BART model performs as the best-performing model among the four models achieving remarkable results in almost all the evaluation metrics like ROUGE, BLEU and BERTScore.
Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation
Existing parameter-efficient fine-tuning (PEFT) methods have achieved significant success on vision transformers (ViTs) adaptation by improving parameter efficiency. However, the exploration of enhancing inference efficiency during adaptation remains underexplored. This limits the broader application of pre-trained ViT models, especially when the model is computationally extensive. In this paper, we propose Dynamic Tuning (DyT), a novel approach to improve both parameter and inference efficiency for ViT adaptation. Specifically, besides using the lightweight adapter modules, we propose a token dispatcher to distinguish informative tokens from less important ones, allowing the latter to dynamically skip the original block, thereby reducing the redundant computation during inference. Additionally, we explore multiple design variants to find the best practice of DyT. Finally, inspired by the mixture-of-experts (MoE) mechanism, we introduce an enhanced adapter to further boost the adaptation performance. We validate DyT across various tasks, including image/video recognition and semantic segmentation. For instance, DyT achieves comparable or even superior performance compared to existing PEFT methods while evoking only 71%-85% of their FLOPs on the VTAB-1K benchmark.
I&S-ViT: An Inclusive & Stable Method for Pushing the Limit of Post-Training ViTs Quantization
Albeit the scalable performance of vision transformers (ViTs), the dense computational costs (training & inference) undermine their position in industrial applications. Post-training quantization (PTQ), tuning ViTs with a tiny dataset and running in a low-bit format, well addresses the cost issue but unluckily bears more performance drops in lower-bit cases. In this paper, we introduce I&S-ViT, a novel method that regulates the PTQ of ViTs in an inclusive and stable fashion. I&S-ViT first identifies two issues in the PTQ of ViTs: (1) Quantization inefficiency in the prevalent log2 quantizer for post-Softmax activations; (2) Rugged and magnified loss landscape in coarse-grained quantization granularity for post-LayerNorm activations. Then, I&S-ViT addresses these issues by introducing: (1) A novel shift-uniform-log2 quantizer (SULQ) that incorporates a shift mechanism followed by uniform quantization to achieve both an inclusive domain representation and accurate distribution approximation; (2) A three-stage smooth optimization strategy (SOS) that amalgamates the strengths of channel-wise and layer-wise quantization to enable stable learning. Comprehensive evaluations across diverse vision tasks validate I&S-ViT' superiority over existing PTQ of ViTs methods, particularly in low-bit scenarios. For instance, I&S-ViT elevates the performance of 3-bit ViT-B by an impressive 50.68%.
I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference
Vision Transformers (ViTs) have achieved state-of-the-art performance on various computer vision applications. However, these models have considerable storage and computational overheads, making their deployment and efficient inference on edge devices challenging. Quantization is a promising approach to reducing model complexity, and the dyadic arithmetic pipeline can allow the quantized models to perform efficient integer-only inference. Unfortunately, dyadic arithmetic is based on the homogeneity condition in convolutional neural networks, which is not applicable to the non-linear components in ViTs, making integer-only inference of ViTs an open issue. In this paper, we propose I-ViT, an integer-only quantization scheme for ViTs, to enable ViTs to perform the entire computational graph of inference with integer arithmetic and bit-shifting, and without any floating-point arithmetic. In I-ViT, linear operations (e.g., MatMul and Dense) follow the integer-only pipeline with dyadic arithmetic, and non-linear operations (e.g., Softmax, GELU, and LayerNorm) are approximated by the proposed light-weight integer-only arithmetic methods. More specifically, I-ViT applies the proposed Shiftmax and ShiftGELU, which are designed to use integer bit-shifting to approximate the corresponding floating-point operations. We evaluate I-ViT on various benchmark models and the results show that integer-only INT8 quantization achieves comparable (or even slightly higher) accuracy to the full-precision (FP) baseline. Furthermore, we utilize TVM for practical hardware deployment on the GPU's integer arithmetic units, achieving 3.72sim4.11times inference speedup compared to the FP model. Code of both Pytorch and TVM is released at https://github.com/zkkli/I-ViT.
