- Enhancing Aspect-based Sentiment Analysis with ParsBERT in Persian Language In the era of pervasive internet use and the dominance of social networks, researchers face significant challenges in Persian text mining including the scarcity of adequate datasets in Persian and the inefficiency of existing language models. This paper specifically tackles these challenges, aiming to amplify the efficiency of language models tailored to the Persian language. Focusing on enhancing the effectiveness of sentiment analysis, our approach employs an aspect-based methodology utilizing the ParsBERT model, augmented with a relevant lexicon. The study centers on sentiment analysis of user opinions extracted from the Persian website 'Digikala.' The experimental results not only highlight the proposed method's superior semantic capabilities but also showcase its efficiency gains with an accuracy of 88.2% and an F1 score of 61.7. The importance of enhancing language models in this context lies in their pivotal role in extracting nuanced sentiments from user-generated content, ultimately advancing the field of sentiment analysis in Persian text mining by increasing efficiency and accuracy. 3 authors · Feb 3, 2025
- PersianLLaMA: Towards Building First Persian Large Language Model Despite the widespread use of the Persian language by millions globally, limited efforts have been made in natural language processing for this language. The use of large language models as effective tools in various natural language processing tasks typically requires extensive textual data and robust hardware resources. Consequently, the scarcity of Persian textual data and the unavailability of powerful hardware resources have hindered the development of large language models for Persian. This paper introduces the first large Persian language model, named PersianLLaMA, trained on a collection of Persian texts and datasets. This foundational model comes in two versions, with 7 and 13 billion parameters, trained on formal and colloquial Persian texts using two different approaches. PersianLLaMA has been evaluated for natural language generation tasks based on the latest evaluation methods, namely using larger language models, and for natural language understanding tasks based on automated machine metrics. The results indicate that PersianLLaMA significantly outperforms its competitors in both understanding and generating Persian text. PersianLLaMA marks an important step in the development of Persian natural language processing and can be a valuable resource for the Persian-speaking community. This large language model can be used for various natural language processing tasks, especially text generation like chatbots, question-answering, machine translation, and text summarization 5 authors · Dec 25, 2023
- PEYMA: A Tagged Corpus for Persian Named Entities The goal in the NER task is to classify proper nouns of a text into classes such as person, location, and organization. This is an important preprocessing step in many NLP tasks such as question-answering and summarization. Although many research studies have been conducted in this area in English and the state-of-the-art NER systems have reached performances of higher than 90 percent in terms of F1 measure, there are very few research studies for this task in Persian. One of the main important causes of this may be the lack of a standard Persian NER dataset to train and test NER systems. In this research we create a standard, big-enough tagged Persian NER dataset which will be distributed for free for research purposes. In order to construct such a standard dataset, we studied standard NER datasets which are constructed for English researches and found out that almost all of these datasets are constructed using news texts. So we collected documents from ten news websites. Later, in order to provide annotators with some guidelines to tag these documents, after studying guidelines used for constructing CoNLL and MUC standard English datasets, we set our own guidelines considering the Persian linguistic rules. 4 authors · Jan 30, 2018
- FaMTEB: Massive Text Embedding Benchmark in Persian Language In this paper, we introduce a comprehensive benchmark for Persian (Farsi) text embeddings, built upon the Massive Text Embedding Benchmark (MTEB). Our benchmark includes 63 datasets spanning seven different tasks: classification, clustering, pair classification, reranking, retrieval, summary retrieval, and semantic textual similarity. The datasets are formed as a combination of existing, translated, and newly generated data, offering a diverse evaluation framework for Persian language models. Given the increasing use of text embedding models in chatbots, evaluation datasets are becoming inseparable ingredients in chatbot challenges and Retrieval-Augmented Generation systems. As a contribution, we include chatbot evaluation datasets in the MTEB benchmark for the first time. In addition, in this paper, we introduce the new task of summary retrieval which is not part of the tasks included in standard MTEB. Another contribution of this paper is the introduction of a substantial number of new Persian language NLP datasets suitable for training and evaluation, some of which have no previous counterparts in Persian. We evaluate the performance of several Persian and multilingual embedding models in a range of tasks. This work introduces an open-source benchmark with datasets, code and a public leaderboard. 7 authors · Feb 17, 2025
- ARLED: Leveraging LED-based ARMAN Model for Abstractive Summarization of Persian Long Documents The increasing volume of textual data poses challenges in reading and comprehending large documents, particularly for scholars who need to extract useful information from research articles. Automatic text summarization has emerged as a powerful tool to condense lengthy documents into concise and informative summaries. Depending on the approach used, text summarization can be categorized as either extractive or abstractive. While extractive methods are commonly used due to their simplicity, they often miss important information. On the other hand, Abstractive Summarization can generate more coherent and informative summaries by understanding the underlying meaning of the text. Abstractive techniques have gained attention in various languages, and recent advancements have been achieved through pre-training models such as BERT, BART, and T5. However, the challenge of summarizing long documents remains, and alternative models like Longformer have been introduced to address this limitation. In this context, this paper focuses on abstractive summarization in the Persian language. The authors introduce a new dataset of 300,000 full-text Persian papers obtained from the Ensani website and apply the ARMAN model, based on the Longformer architecture, to generate summaries. The experimental results demonstrate promising performance in Persian text summarization. The paper provides a comprehensive overview of related work, discusses the methodology, presents the experimental results, and concludes with future research directions. 4 authors · Mar 13, 2025
- Hakim: Farsi Text Embedding Model Recent advancements in text embedding have significantly improved natural language understanding across many languages, yet Persian remains notably underrepresented in large-scale embedding research. In this paper, we present Hakim, a novel state-of-the-art Persian text embedding model that achieves a 8.5% performance improvement over existing approaches on the FaMTEB benchmark, outperforming all previously developed Persian language models. As part of this work, we introduce three new datasets - Corpesia, Pairsia-sup, and Pairsia-unsup - to support supervised and unsupervised training scenarios. Additionally, Hakim is designed for applications in chatbots and retrieval-augmented generation (RAG) systems, particularly addressing retrieval tasks that require incorporating message history within these systems. We also propose a new baseline model built on the BERT architecture. Our language model consistently achieves higher accuracy across various Persian NLP tasks, while the RetroMAE-based model proves particularly effective for textual information retrieval applications. Together, these contributions establish a new foundation for advancing Persian language understanding. 4 authors · May 13, 2025
- HmBlogs: A big general Persian corpus This paper introduces the hmBlogs corpus for Persian, as a low resource language. This corpus has been prepared based on a collection of nearly 20 million blog posts over a period of about 15 years from a space of Persian blogs and includes more than 6.8 billion tokens. It can be claimed that this corpus is currently the largest Persian corpus that has been prepared independently for the Persian language. This corpus is presented in both raw and preprocessed forms, and based on the preprocessed corpus some word embedding models are produced. By the provided models, the hmBlogs is compared with some of the most important corpora available in Persian, and the results show the superiority of the hmBlogs corpus over the others. These evaluations also present the importance and effects of corpora, evaluation datasets, model production methods, different hyperparameters and even the evaluation methods. In addition to evaluating the corpus and its produced language models, this research also presents a semantic analogy dataset. 2 authors · Nov 3, 2021
- Leveraging ParsBERT and Pretrained mT5 for Persian Abstractive Text Summarization Text summarization is one of the most critical Natural Language Processing (NLP) tasks. More and more researches are conducted in this field every day. Pre-trained transformer-based encoder-decoder models have begun to gain popularity for these tasks. This paper proposes two methods to address this task and introduces a novel dataset named pn-summary for Persian abstractive text summarization. The models employed in this paper are mT5 and an encoder-decoder version of the ParsBERT model (i.e., a monolingual BERT model for Persian). These models are fine-tuned on the pn-summary dataset. The current work is the first of its kind and, by achieving promising results, can serve as a baseline for any future work. 3 authors · Dec 21, 2020
- FaBERT: Pre-training BERT on Persian Blogs We introduce FaBERT, a Persian BERT-base model pre-trained on the HmBlogs corpus, encompassing both informal and formal Persian texts. FaBERT is designed to excel in traditional Natural Language Understanding (NLU) tasks, addressing the intricacies of diverse sentence structures and linguistic styles prevalent in the Persian language. In our comprehensive evaluation of FaBERT on 12 datasets in various downstream tasks, encompassing Sentiment Analysis (SA), Named Entity Recognition (NER), Natural Language Inference (NLI), Question Answering (QA), and Question Paraphrasing (QP), it consistently demonstrated improved performance, all achieved within a compact model size. The findings highlight the importance of utilizing diverse and cleaned corpora, such as HmBlogs, to enhance the performance of language models like BERT in Persian Natural Language Processing (NLP) applications. FaBERT is openly accessible at https://huggingface.co/sbunlp/fabert 4 authors · Feb 9, 2024
- MIZAN: A Large Persian-English Parallel Corpus One of the most major and essential tasks in natural language processing is machine translation that is now highly dependent upon multilingual parallel corpora. Through this paper, we introduce the biggest Persian-English parallel corpus with more than one million sentence pairs collected from masterpieces of literature. We also present acquisition process and statistics of the corpus, and experiment a base-line statistical machine translation system using the corpus. 1 authors · Jan 6, 2018
- SentiPers: A Sentiment Analysis Corpus for Persian Sentiment Analysis (SA) is a major field of study in natural language processing, computational linguistics and information retrieval. Interest in SA has been constantly growing in both academia and industry over the recent years. Moreover, there is an increasing need for generating appropriate resources and datasets in particular for low resource languages including Persian. These datasets play an important role in designing and developing appropriate opinion mining platforms using supervised, semi-supervised or unsupervised methods. In this paper, we outline the entire process of developing a manually annotated sentiment corpus, SentiPers, which covers formal and informal written contemporary Persian. To the best of our knowledge, SentiPers is a unique sentiment corpus with such a rich annotation in three different levels including document-level, sentence-level, and entity/aspect-level for Persian. The corpus contains more than 26000 sentences of users opinions from digital product domain and benefits from special characteristics such as quantifying the positiveness or negativity of an opinion through assigning a number within a specific range to any given sentence. Furthermore, we present statistics on various components of our corpus as well as studying the inter-annotator agreement among the annotators. Finally, some of the challenges that we faced during the annotation process will be discussed as well. 5 authors · Jan 23, 2018
- ParsiNLU: A Suite of Language Understanding Challenges for Persian Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this rich language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of high-level tasks -- Reading Comprehension, Textual Entailment, etc. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Besides, we present the first results on state-of-the-art monolingual and multi-lingual pre-trained language-models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding. 25 authors · Dec 11, 2020
- PERLEX: A Bilingual Persian-English Gold Dataset for Relation Extraction Relation extraction is the task of extracting semantic relations between entities in a sentence. It is an essential part of some natural language processing tasks such as information extraction, knowledge extraction, and knowledge base population. The main motivations of this research stem from a lack of a dataset for relation extraction in the Persian language as well as the necessity of extracting knowledge from the growing big-data in the Persian language for different applications. In this paper, we present "PERLEX" as the first Persian dataset for relation extraction, which is an expert-translated version of the "Semeval-2010-Task-8" dataset. Moreover, this paper addresses Persian relation extraction utilizing state-of-the-art language-agnostic algorithms. We employ six different models for relation extraction on the proposed bilingual dataset, including a non-neural model (as the baseline), three neural models, and two deep learning models fed by multilingual-BERT contextual word representations. The experiments result in the maximum f-score 77.66% (provided by BERTEM-MTB method) as the state-of-the-art of relation extraction in the Persian language. 4 authors · May 13, 2020
- Advancing Retrieval-Augmented Generation for Persian: Development of Language Models, Comprehensive Benchmarks, and Best Practices for Optimization This paper examines the specific obstacles of constructing Retrieval-Augmented Generation(RAG) systems in low-resource languages, with a focus on Persian's complicated morphology and versatile syntax. The research aims to improve retrieval and generation accuracy by introducing Persian-specific models, namely MatinaRoberta(a masked language model) and MatinaSRoberta(a fine-tuned Sentence-BERT), along with a comprehensive benchmarking framework. Three datasets-general knowledge(PQuad), scientifically specialized texts, and organizational reports, were used to assess these models after they were trained on a varied corpus of 73.11 billion Persian tokens. The methodology involved extensive pretraining, fine-tuning with tailored loss functions, and systematic evaluations using both traditional metrics and the Retrieval-Augmented Generation Assessment framework. The results show that MatinaSRoberta outperformed previous embeddings, achieving superior contextual relevance and retrieval accuracy across datasets. Temperature tweaking, chunk size modifications, and document summary indexing were explored to enhance RAG setups. Larger models like Llama-3.1 (70B) consistently demonstrated the highest generation accuracy, while smaller models faced challenges with domain-specific and formal contexts. The findings underscore the potential for developing RAG systems in Persian through customized embeddings and retrieval-generation settings and highlight the enhancement of NLP applications such as search engines and legal document analysis in low-resource languages. 5 authors · Jan 8, 2025
- DeepSentiPers: Novel Deep Learning Models Trained Over Proposed Augmented Persian Sentiment Corpus This paper focuses on how to extract opinions over each Persian sentence-level text. Deep learning models provided a new way to boost the quality of the output. However, these architectures need to feed on big annotated data as well as an accurate design. To best of our knowledge, we do not merely suffer from lack of well-annotated Persian sentiment corpus, but also a novel model to classify the Persian opinions in terms of both multiple and binary classification. So in this work, first we propose two novel deep learning architectures comprises of bidirectional LSTM and CNN. They are a part of a deep hierarchy designed precisely and also able to classify sentences in both cases. Second, we suggested three data augmentation techniques for the low-resources Persian sentiment corpus. Our comprehensive experiments on three baselines and two different neural word embedding methods show that our data augmentation methods and intended models successfully address the aims of the research. 3 authors · Apr 11, 2020
- ParsBERT: Transformer-based Model for Persian Language Understanding The surge of pre-trained language models has begun a new era in the field of Natural Language Processing (NLP) by allowing us to build powerful language models. Among these models, Transformer-based models such as BERT have become increasingly popular due to their state-of-the-art performance. However, these models are usually focused on English, leaving other languages to multilingual models with limited resources. This paper proposes a monolingual BERT for the Persian language (ParsBERT), which shows its state-of-the-art performance compared to other architectures and multilingual models. Also, since the amount of data available for NLP tasks in Persian is very restricted, a massive dataset for different NLP tasks as well as pre-training the model is composed. ParsBERT obtains higher scores in all datasets, including existing ones as well as composed ones and improves the state-of-the-art performance by outperforming both multilingual BERT and other prior works in Sentiment Analysis, Text Classification and Named Entity Recognition tasks. 4 authors · May 26, 2020
1 TookaBERT: A Step Forward for Persian NLU The field of natural language processing (NLP) has seen remarkable advancements, thanks to the power of deep learning and foundation models. Language models, and specifically BERT, have been key players in this progress. In this study, we trained and introduced two new BERT models using Persian data. We put our models to the test, comparing them to seven existing models across 14 diverse Persian natural language understanding (NLU) tasks. The results speak for themselves: our larger model outperforms the competition, showing an average improvement of at least +2.8 points. This highlights the effectiveness and potential of our new BERT models for Persian NLU tasks. 10 authors · Jul 23, 2024
- Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English This study focuses on the generation of Persian named entity datasets through the application of machine translation on English datasets. The generated datasets were evaluated by experimenting with one monolingual and one multilingual transformer model. Notably, the CoNLL 2003 dataset has achieved the highest F1 score of 85.11%. In contrast, the WNUT 2017 dataset yielded the lowest F1 score of 40.02%. The results of this study highlight the potential of machine translation in creating high-quality named entity recognition datasets for low-resource languages like Persian. The study compares the performance of these generated datasets with English named entity recognition systems and provides insights into the effectiveness of machine translation for this task. Additionally, this approach could be used to augment data in low-resource language or create noisy data to make named entity systems more robust and improve them. 2 authors · Feb 19, 2023
- PQuAD: A Persian Question Answering Dataset We present Persian Question Answering Dataset (PQuAD), a crowdsourced reading comprehension dataset on Persian Wikipedia articles. It includes 80,000 questions along with their answers, with 25% of the questions being adversarially unanswerable. We examine various properties of the dataset to show the diversity and the level of its difficulty as an MRC benchmark. By releasing this dataset, we aim to ease research on Persian reading comprehension and development of Persian question answering systems. Our experiments on different state-of-the-art pre-trained contextualized language models show 74.8% Exact Match (EM) and 87.6% F1-score that can be used as the baseline results for further research on Persian QA. 4 authors · Feb 13, 2022
- FarsEval-PKBETS: A new diverse benchmark for evaluating Persian large language models Research on evaluating and analyzing large language models (LLMs) has been extensive for resource-rich languages such as English, yet their performance in languages such as Persian has received considerably less attention. This paper introduces FarsEval-PKBETS benchmark, a subset of FarsEval project for evaluating large language models in Persian. This benchmark consists of 4000 questions and answers in various formats, including multiple choice, short answer and descriptive responses. It covers a wide range of domains and tasks,including medicine, law, religion, Persian language, encyclopedic knowledge, human preferences, social knowledge, ethics and bias, text generation, and respecting others' rights. This bechmark incorporates linguistics, cultural, and local considerations relevant to the Persian language and Iran. To ensure the questions are challenging for current LLMs, three models -- Llama3-70B, PersianMind, and Dorna -- were evaluated using this benchmark. Their average accuracy was below 50%, meaning they provided fully correct answers to fewer than half of the questions. These results indicate that current language models are still far from being able to solve this benchmark 19 authors · Apr 20, 2025
- PerSHOP -- A Persian dataset for shopping dialogue systems modeling Nowadays, dialogue systems are used in many fields of industry and research. There are successful instances of these systems, such as Apple Siri, Google Assistant, and IBM Watson. Task-oriented dialogue system is a category of these, that are used in specific tasks. They can perform tasks such as booking plane tickets or making restaurant reservations. Shopping is one of the most popular areas on these systems. The bot replaces the human salesperson and interacts with the customers by speaking. To train the models behind the scenes of these systems, annotated data is needed. In this paper, we developed a dataset of dialogues in the Persian language through crowd-sourcing. We annotated these dialogues to train a model. This dataset contains nearly 22k utterances in 15 different domains and 1061 dialogues. This is the largest Persian dataset in this field, which is provided freely so that future researchers can use it. Also, we proposed some baseline models for natural language understanding (NLU) tasks. These models perform two tasks for NLU: intent classification and entity extraction. The F-1 score metric obtained for intent classification is around 91% and for entity extraction is around 93%, which can be a baseline for future research. 2 authors · Jan 1, 2024
- FarsTail: A Persian Natural Language Inference Dataset Natural language inference (NLI) is known as one of the central tasks in natural language processing (NLP) which encapsulates many fundamental aspects of language understanding. With the considerable achievements of data-hungry deep learning methods in NLP tasks, a great amount of effort has been devoted to develop more diverse datasets for different languages. In this paper, we present a new dataset for the NLI task in the Persian language, also known as Farsi, which is one of the dominant languages in the Middle East. This dataset, named FarsTail, includes 10,367 samples which are provided in both the Persian language as well as the indexed format to be useful for non-Persian researchers. The samples are generated from 3,539 multiple-choice questions with the least amount of annotator interventions in a way similar to the SciTail dataset. A carefully designed multi-step process is adopted to ensure the quality of the dataset. We also present the results of traditional and state-of-the-art methods on FarsTail including different embedding methods such as word2vec, fastText, ELMo, BERT, and LASER, as well as different modeling approaches such as DecompAtt, ESIM, HBMP, and ULMFiT to provide a solid baseline for the future research. The best obtained test accuracy is 83.38% which shows that there is a big room for improving the current methods to be useful for real-world NLP applications in different languages. We also investigate the extent to which the models exploit superficial clues, also known as dataset biases, in FarsTail, and partition the test set into easy and hard subsets according to the success of biased models. The dataset is available at https://github.com/dml-qom/FarsTail 6 authors · Sep 18, 2020
3 Open foundation models for Azerbaijani language The emergence of multilingual large language models has enabled the development of language understanding and generation systems in Azerbaijani. However, most of the production-grade systems rely on cloud solutions, such as GPT-4. While there have been several attempts to develop open foundation models for Azerbaijani, these works have not found their way into common use due to a lack of systemic benchmarking. This paper encompasses several lines of work that promote open-source foundation models for Azerbaijani. We introduce (1) a large text corpus for Azerbaijani, (2) a family of encoder-only language models trained on this dataset, (3) labeled datasets for evaluating these models, and (4) extensive evaluation that covers all major open-source models with Azerbaijani support. 5 authors · Jul 2, 2024
- SINA-BERT: A pre-trained Language Model for Analysis of Medical Texts in Persian We have released Sina-BERT, a language model pre-trained on BERT (Devlin et al., 2018) to address the lack of a high-quality Persian language model in the medical domain. SINA-BERT utilizes pre-training on a large-scale corpus of medical contents including formal and informal texts collected from a variety of online resources in order to improve the performance on health-care related tasks. We employ SINA-BERT to complete following representative tasks: categorization of medical questions, medical sentiment analysis, and medical question retrieval. For each task, we have developed Persian annotated data sets for training and evaluation and learnt a representation for the data of each task especially complex and long medical questions. With the same architecture being used across tasks, SINA-BERT outperforms BERT-based models that were previously made available in the Persian language. 5 authors · Apr 15, 2021
- Building a Rich Dataset to Empower the Persian Question Answering Systems Question answering systems provide short, precise, and specific answers to questions. So far, many robust question answering systems have been developed for English, while some languages with fewer resources, like Persian, have few numbers of standard dataset. In this study, a comprehensive open-domain dataset is presented for Persian. This dataset is called NextQuAD and has 7,515 contexts, including 23,918 questions and answers. Then, a BERT-based question answering model has been applied to this dataset using two pre-trained language models, including ParsBERT and XLM-RoBERTa. The results of these two models have been ensembled using mean logits. Evaluation on the development set shows 0.95 Exact Match (EM) and 0.97 Fl_score. Also, to compare the NextQuAD with other Persian datasets, our trained model on the NextQuAD, is evaluated on two other datasets named PersianQA and ParSQuAD. Comparisons show that the proposed model increased EM by 0.39 and 0.14 respectively in PersianQA and ParSQuAD-manual, while a slight EM decline of 0.007 happened in ParSQuAD-automatic. 2 authors · Dec 28, 2024
2 ParsVoice: A Large-Scale Multi-Speaker Persian Speech Corpus for Text-to-Speech Synthesis Existing Persian speech datasets are typically smaller than their English counterparts, which creates a key limitation for developing Persian speech technologies. We address this gap by introducing ParsVoice, the largest Persian speech corpus designed specifically for text-to-speech(TTS) applications. We created an automated pipeline that transforms raw audiobook content into TTS-ready data, incorporating components such as a BERT-based sentence completion detector, a binary search boundary optimization method for precise audio-text alignment, and audio-text quality assessment frameworks tailored to Persian. The pipeline processes 2,000 audiobooks, yielding 3,526 hours of clean speech, which was further filtered into a 1,804-hour high-quality subset suitable for TTS, featuring more than 470 speakers. To validate the dataset, we fine-tuned XTTS for Persian, achieving a naturalness Mean Opinion Score (MOS) of 3.6/5 and a Speaker Similarity Mean Opinion Score (SMOS) of 4.0/5 demonstrating ParsVoice's effectiveness for training multi-speaker TTS systems. ParsVoice is the largest high-quality Persian speech dataset, offering speaker diversity and audio quality comparable to major English corpora. The complete dataset has been made publicly available to accelerate the development of Persian speech technologies. The ParsVoice dataset is publicly available at: https://huggingface.co/datasets/MohammadJRanjbar/ParsVoice. 3 authors · Oct 12, 2025
- Evaluating the Creativity of LLMs in Persian Literary Text Generation Large language models (LLMs) have demonstrated notable creative abilities in generating literary texts, including poetry and short stories. However, prior research has primarily centered on English, with limited exploration of non-English literary traditions and without standardized methods for assessing creativity. In this paper, we evaluate the capacity of LLMs to generate Persian literary text enriched with culturally relevant expressions. We build a dataset of user-generated Persian literary spanning 20 diverse topics and assess model outputs along four creativity dimensions-originality, fluency, flexibility, and elaboration-by adapting the Torrance Tests of Creative Thinking. To reduce evaluation costs, we adopt an LLM as a judge for automated scoring and validate its reliability against human judgments using intraclass correlation coefficients, observing strong agreement. In addition, we analyze the models' ability to understand and employ four core literary devices: simile, metaphor, hyperbole, and antithesis. Our results highlight both the strengths and limitations of LLMs in Persian literary text generation, underscoring the need for further refinement. 3 authors · Sep 22, 2025
- Extending LLMs to New Languages: A Case Study of Llama and Persian Adaptation Large language models (LLMs) have made great progress in classification and text generation tasks. However, they are mainly trained on English data and often struggle with low-resource languages. In this study, we explore adding a new language, i.e., Persian, to Llama (a model with a limited understanding of Persian) using parameter-efficient fine-tuning. We employ a multi-stage approach involving pretraining on monolingual Persian data, aligning representations through bilingual pretraining and instruction datasets, and instruction-tuning with task-specific datasets. We evaluate the model's performance at each stage on generation and classification tasks. Our findings suggest that incorporating the Persian language, through bilingual data alignment, can enhance classification accuracy for Persian tasks, with no adverse impact and sometimes even improvements on English tasks. Additionally, the results highlight the model's initial strength as a critical factor when working with limited training data, with cross-lingual alignment offering minimal benefits for the low-resource language. Knowledge transfer from English to Persian has a marginal effect, primarily benefiting simple classification tasks. 5 authors · Dec 17, 2024
- MELAC: Massive Evaluation of Large Language Models with Alignment of Culture in Persian Language As large language models (LLMs) become increasingly embedded in our daily lives, evaluating their quality and reliability across diverse contexts has become essential. While comprehensive benchmarks exist for assessing LLM performance in English, there remains a significant gap in evaluation resources for other languages. Moreover, because most LLMs are trained primarily on data rooted in European and American cultures, they often lack familiarity with non-Western cultural contexts. To address this limitation, our study focuses on the Persian language and Iranian culture. We introduce 19 new evaluation datasets specifically designed to assess LLMs on topics such as Iranian law, Persian grammar, Persian idioms, and university entrance exams. Using these datasets, we benchmarked 41 prominent LLMs, aiming to bridge the existing cultural and linguistic evaluation gap in the field. 11 authors · Aug 1, 2025
- Emotion Alignment: Discovering the Gap Between Social Media and Real-World Sentiments in Persian Tweets and Images In contemporary society, widespread social media usage is evident in people's daily lives. Nevertheless, disparities in emotional expressions between the real world and online platforms can manifest. We comprehensively analyzed Persian community on X to explore this phenomenon. An innovative pipeline was designed to measure the similarity between emotions in the real world compared to social media. Accordingly, recent tweets and images of participants were gathered and analyzed using Transformers-based text and image sentiment analysis modules. Each participant's friends also provided insights into the their real-world emotions. A distance criterion was used to compare real-world feelings with virtual experiences. Our study encompassed N=105 participants, 393 friends who contributed their perspectives, over 8,300 collected tweets, and 2,000 media images. Results indicated a 28.67% similarity between images and real-world emotions, while tweets exhibited a 75.88% alignment with real-world feelings. Additionally, the statistical significance confirmed that the observed disparities in sentiment proportions. 3 authors · Apr 14, 2025
- Text Classification Algorithms: A Survey In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed. 6 authors · Apr 16, 2019
- For Women, Life, Freedom: A Participatory AI-Based Social Web Analysis of a Watershed Moment in Iran's Gender Struggles In this paper, we present a computational analysis of the Persian language Twitter discourse with the aim to estimate the shift in stance toward gender equality following the death of Mahsa Amini in police custody. We present an ensemble active learning pipeline to train a stance classifier. Our novelty lies in the involvement of Iranian women in an active role as annotators in building this AI system. Our annotators not only provide labels, but they also suggest valuable keywords for more meaningful corpus creation as well as provide short example documents for a guided sampling step. Our analyses indicate that Mahsa Amini's death triggered polarized Persian language discourse where both fractions of negative and positive tweets toward gender equality increased. The increase in positive tweets was slightly greater than the increase in negative tweets. We also observe that with respect to account creation time, between the state-aligned Twitter accounts and pro-protest Twitter accounts, pro-protest accounts are more similar to baseline Persian Twitter activity. 3 authors · Jul 7, 2023
2 ELAB: Extensive LLM Alignment Benchmark in Persian Language This paper presents a comprehensive evaluation framework for aligning Persian Large Language Models (LLMs) with critical ethical dimensions, including safety, fairness, and social norms. It addresses the gaps in existing LLM evaluation frameworks by adapting them to Persian linguistic and cultural contexts. This benchmark creates three types of Persian-language benchmarks: (i) translated data, (ii) new data generated synthetically, and (iii) new naturally collected data. We translate Anthropic Red Teaming data, AdvBench, HarmBench, and DecodingTrust into Persian. Furthermore, we create ProhibiBench-fa, SafeBench-fa, FairBench-fa, and SocialBench-fa as new datasets to address harmful and prohibited content in indigenous culture. Moreover, we collect extensive dataset as GuardBench-fa to consider Persian cultural norms. By combining these datasets, our work establishes a unified framework for evaluating Persian LLMs, offering a new approach to culturally grounded alignment evaluation. A systematic evaluation of Persian LLMs is performed across the three alignment aspects: safety (avoiding harmful content), fairness (mitigating biases), and social norms (adhering to culturally accepted behaviors). We present a publicly available leaderboard that benchmarks Persian LLMs with respect to safety, fairness, and social norms at: https://huggingface.co/spaces/MCILAB/LLM_Alignment_Evaluation. 8 authors · Apr 16, 2025
1 Leveraging Online Data to Enhance Medical Knowledge in a Small Persian Language Model The rapid advancement of language models has demonstrated the potential of artificial intelligence in the healthcare industry. However, small language models struggle with specialized domains in low-resource languages like Persian. While numerous medical-domain websites exist in Persian, no curated dataset or corpus has been available making ours the first of its kind. This study explores the enhancement of medical knowledge in a small language model by leveraging accessible online data, including a crawled corpus from medical magazines and a dataset of real doctor-patient QA pairs. We fine-tuned a baseline model using our curated data to improve its medical knowledge. Benchmark evaluations demonstrate that the fine-tuned model achieves improved accuracy in medical question answering and provides better responses compared to its baseline. This work highlights the potential of leveraging open-access online data to enrich small language models in medical fields, providing a novel solution for Persian medical AI applications suitable for resource-constrained environments. 6 authors · May 21, 2025
2 PersianMedQA: Language-Centric Evaluation of LLMs in the Persian Medical Domain Large Language Models (LLMs) have achieved remarkable performance on a wide range of NLP benchmarks, often surpassing human-level accuracy. However, their reliability in high-stakes domains such as medicine, particularly in low-resource languages, remains underexplored. In this work, we introduce PersianMedQA, a large-scale, expert-validated dataset of multiple-choice Persian medical questions, designed to evaluate LLMs across both Persian and English. We benchmark over 40 state-of-the-art models, including general-purpose, Persian fine-tuned, and medical LLMs, in zero-shot and chain-of-thought (CoT) settings. Our results show that closed-source general models (e.g., GPT-4.1) consistently outperform all other categories, achieving 83.3% accuracy in Persian and 80.7% in English, while Persian fine-tuned models such as Dorna underperform significantly (e.g., 35.9% in Persian), often struggling with both instruction-following and domain reasoning. We also analyze the impact of translation, showing that while English performance is generally higher, Persian responses are sometimes more accurate due to cultural and clinical contextual cues. Finally, we demonstrate that model size alone is insufficient for robust performance without strong domain or language adaptation. PersianMedQA provides a foundation for evaluating multilingual and culturally grounded medical reasoning in LLMs. The PersianMedQA dataset can be accessed at: https://huggingface.co/datasets/MohammadJRanjbar/PersianMedQA](https://huggingface.co/datasets/MohammadJRanjbar/PersianMedQA 6 authors · May 30, 2025
- Generative AI-Based Text Generation Methods Using Pre-Trained GPT-2 Model This work delved into the realm of automatic text generation, exploring a variety of techniques ranging from traditional deterministic approaches to more modern stochastic methods. Through analysis of greedy search, beam search, top-k sampling, top-p sampling, contrastive searching, and locally typical searching, this work has provided valuable insights into the strengths, weaknesses, and potential applications of each method. Each text-generating method is evaluated using several standard metrics and a comparative study has been made on the performance of the approaches. Finally, some future directions of research in the field of automatic text generation are also identified. 8 authors · Apr 2, 2024
- ArmanEmo: A Persian Dataset for Text-based Emotion Detection With the recent proliferation of open textual data on social media platforms, Emotion Detection (ED) from Text has received more attention over the past years. It has many applications, especially for businesses and online service providers, where emotion detection techniques can help them make informed commercial decisions by analyzing customers/users' feelings towards their products and services. In this study, we introduce ArmanEmo, a human-labeled emotion dataset of more than 7000 Persian sentences labeled for seven categories. The dataset has been collected from different resources, including Twitter, Instagram, and Digikala (an Iranian e-commerce company) comments. Labels are based on Ekman's six basic emotions (Anger, Fear, Happiness, Hatred, Sadness, Wonder) and another category (Other) to consider any other emotion not included in Ekman's model. Along with the dataset, we have provided several baseline models for emotion classification focusing on the state-of-the-art transformer-based language models. Our best model achieves a macro-averaged F1 score of 75.39 percent across our test dataset. Moreover, we also conduct transfer learning experiments to compare our proposed dataset's generalization against other Persian emotion datasets. Results of these experiments suggest that our dataset has superior generalizability among the existing Persian emotion datasets. ArmanEmo is publicly available for non-commercial use at https://github.com/Arman-Rayan-Sharif/arman-text-emotion. 4 authors · Jul 24, 2022
- Agentic Username Suggestion and Multimodal Gender Detection in Online Platforms: Introducing the PNGT-26K Dataset Persian names present unique challenges for natural language processing applications, particularly in gender detection and digital identity creation, due to transliteration inconsistencies and cultural-specific naming patterns. Existing tools exhibit significant performance degradation on Persian names, while the scarcity of comprehensive datasets further compounds these limitations. To address these challenges, the present research introduces PNGT-26K, a comprehensive dataset of Persian names, their commonly associated gender, and their English transliteration, consisting of approximately 26,000 tuples. As a demonstration of how this resource can be utilized, we also introduce two frameworks, namely Open Gender Detection and Nominalist. Open Gender Detection is a production-grade, ready-to-use framework for using existing data from a user, such as profile photo and name, to give a probabilistic guess about the person's gender. Nominalist, the second framework introduced by this paper, utilizes agentic AI to help users choose a username for their social media accounts on any platform. It can be easily integrated into any website to provide a better user experience. The PNGT-26K dataset, Nominalist and Open Gender Detection frameworks are publicly available on Github. 3 authors · Sep 14, 2025
- ShEMO -- A Large-Scale Validated Database for Persian Speech Emotion Detection This paper introduces a large-scale, validated database for Persian called Sharif Emotional Speech Database (ShEMO). The database includes 3000 semi-natural utterances, equivalent to 3 hours and 25 minutes of speech data extracted from online radio plays. The ShEMO covers speech samples of 87 native-Persian speakers for five basic emotions including anger, fear, happiness, sadness and surprise, as well as neutral state. Twelve annotators label the underlying emotional state of utterances and majority voting is used to decide on the final labels. According to the kappa measure, the inter-annotator agreement is 64% which is interpreted as "substantial agreement". We also present benchmark results based on common classification methods in speech emotion detection task. According to the experiments, support vector machine achieves the best results for both gender-independent (58.2%) and gender-dependent models (female=59.4%, male=57.6%). The ShEMO is available for academic purposes free of charge to provide a baseline for further research on Persian emotional speech. 3 authors · Jun 3, 2019
- naab: A ready-to-use plug-and-play corpus for Farsi Huge corpora of textual data are always known to be a crucial need for training deep models such as transformer-based ones. This issue is emerging more in lower resource languages - like Farsi. We propose naab, the biggest cleaned and ready-to-use open-source textual corpus in Farsi. It contains about 130GB of data, 250 million paragraphs, and 15 billion words. The project name is derived from the Farsi word NAAB K which means pure and high grade. We also provide the raw version of the corpus called naab-raw and an easy-to-use preprocessor that can be employed by those who wanted to make a customized corpus. 4 authors · Aug 29, 2022
- A Persian ASR-based SER: Modification of Sharif Emotional Speech Database and Investigation of Persian Text Corpora Speech Emotion Recognition (SER) is one of the essential perceptual methods of humans in understanding the situation and how to interact with others, therefore, in recent years, it has been tried to add the ability to recognize emotions to human-machine communication systems. Since the SER process relies on labeled data, databases are essential for it. Incomplete, low-quality or defective data may lead to inaccurate predictions. In this paper, we fixed the inconsistencies in Sharif Emotional Speech Database (ShEMO), as a Persian database, by using an Automatic Speech Recognition (ASR) system and investigating the effect of Farsi language models obtained from accessible Persian text corpora. We also introduced a Persian/Farsi ASR-based SER system that uses linguistic features of the ASR outputs and Deep Learning-based models. 2 authors · Nov 18, 2022
- PerCul: A Story-Driven Cultural Evaluation of LLMs in Persian Large language models predominantly reflect Western cultures, largely due to the dominance of English-centric training data. This imbalance presents a significant challenge, as LLMs are increasingly used across diverse contexts without adequate evaluation of their cultural competence in non-English languages, including Persian. To address this gap, we introduce PerCul, a carefully constructed dataset designed to assess the sensitivity of LLMs toward Persian culture. PerCul features story-based, multiple-choice questions that capture culturally nuanced scenarios. Unlike existing benchmarks, PerCul is curated with input from native Persian annotators to ensure authenticity and to prevent the use of translation as a shortcut. We evaluate several state-of-the-art multilingual and Persian-specific LLMs, establishing a foundation for future research in cross-cultural NLP evaluation. Our experiments demonstrate a 11.3% gap between best closed source model and layperson baseline while the gap increases to 21.3% by using the best open-weight model. You can access the dataset from here: https://huggingface.co/datasets/teias-ai/percul 5 authors · Feb 11, 2025
5 PersianMind: A Cross-Lingual Persian-English Large Language Model Large language models demonstrate remarkable proficiency in various linguistic tasks and have extensive knowledge across various domains. Although they perform best in English, their ability in other languages is notable too. In contrast, open-source models, such as LLaMa, are primarily trained on English datasets, resulting in poor performance in non-English languages. In this paper, we introduce PersianMind, an open-source bilingual large language model which demonstrates comparable performance to closed-source GPT-3.5-turbo in the Persian language. By expanding LLaMa2's vocabulary with 10,000 Persian tokens and training it on a dataset comprising nearly 2 billion Persian tokens, we show that our approach preserves the model's English knowledge and employs transfer learning to excel at transferring task knowledge from one language to another. 3 authors · Jan 12, 2024 4
8 MEENA (PersianMMMU): Multimodal-Multilingual Educational Exams for N-level Assessment Recent advancements in large vision-language models (VLMs) have primarily focused on English, with limited attention given to other languages. To address this gap, we introduce MEENA (also known as PersianMMMU), the first dataset designed to evaluate Persian VLMs across scientific, reasoning, and human-level understanding tasks. Our dataset comprises approximately 7,500 Persian and 3,000 English questions, covering a wide range of topics such as reasoning, mathematics, physics, diagrams, charts, and Persian art and literature. Key features of MEENA include: (1) diverse subject coverage spanning various educational levels, from primary to upper secondary school, (2) rich metadata, including difficulty levels and descriptive answers, (3) original Persian data that preserves cultural nuances, (4) a bilingual structure to assess cross-linguistic performance, and (5) a series of diverse experiments assessing various capabilities, including overall performance, the model's ability to attend to images, and its tendency to generate hallucinations. We hope this benchmark contributes to enhancing VLM capabilities beyond English. 11 authors · Aug 24, 2025 3
- Persian Heritage Image Binarization Competition (PHIBC 2012) The first competition on the binarization of historical Persian documents and manuscripts (PHIBC 2012) has been organized in conjunction with the first Iranian conference on pattern recognition and image analysis (PRIA 2013). The main objective of PHIBC 2012 is to evaluate performance of the binarization methodologies, when applied on the Persian heritage images. This paper provides a report on the methodology and performance of the three submitted algorithms based on evaluation measures has been used. 2 authors · Jun 26, 2013
- Text classification dataset and analysis for Uzbek language Text classification is an important task in Natural Language Processing (NLP), where the goal is to categorize text data into predefined classes. In this study, we analyse the dataset creation steps and evaluation techniques of multi-label news categorisation task as part of text classification. We first present a newly obtained dataset for Uzbek text classification, which was collected from 10 different news and press websites and covers 15 categories of news, press and law texts. We also present a comprehensive evaluation of different models, ranging from traditional bag-of-words models to deep learning architectures, on this newly created dataset. Our experiments show that the Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) based models outperform the rule-based models. The best performance is achieved by the BERTbek model, which is a transformer-based BERT model trained on the Uzbek corpus. Our findings provide a good baseline for further research in Uzbek text classification. 4 authors · Feb 28, 2023
- Comparative Study of Multilingual Idioms and Similes in Large Language Models This study addresses the gap in the literature concerning the comparative performance of LLMs in interpreting different types of figurative language across multiple languages. By evaluating LLMs using two multilingual datasets on simile and idiom interpretation, we explore the effectiveness of various prompt engineering strategies, including chain-of-thought, few-shot, and English translation prompts. We extend the language of these datasets to Persian as well by building two new evaluation sets. Our comprehensive assessment involves both closed-source (GPT-3.5, GPT-4o mini, Gemini 1.5), and open-source models (Llama 3.1, Qwen2), highlighting significant differences in performance across languages and figurative types. Our findings reveal that while prompt engineering methods are generally effective, their success varies by figurative type, language, and model. We also observe that open-source models struggle particularly with low-resource languages in similes. Additionally, idiom interpretation is nearing saturation for many languages, necessitating more challenging evaluations. 6 authors · Oct 21, 2024
- An Amharic News Text classification Dataset In NLP, text classification is one of the primary problems we try to solve and its uses in language analyses are indisputable. The lack of labeled training data made it harder to do these tasks in low resource languages like Amharic. The task of collecting, labeling, annotating, and making valuable this kind of data will encourage junior researchers, schools, and machine learning practitioners to implement existing classification models in their language. In this short paper, we aim to introduce the Amharic text classification dataset that consists of more than 50k news articles that were categorized into 6 classes. This dataset is made available with easy baseline performances to encourage studies and better performance experiments. 2 authors · Mar 10, 2021
- HC4: A New Suite of Test Collections for Ad Hoc CLIR HC4 is a new suite of test collections for ad hoc Cross-Language Information Retrieval (CLIR), with Common Crawl News documents in Chinese, Persian, and Russian, topics in English and in the document languages, and graded relevance judgments. New test collections are needed because existing CLIR test collections built using pooling of traditional CLIR runs have systematic gaps in their relevance judgments when used to evaluate neural CLIR methods. The HC4 collections contain 60 topics and about half a million documents for each of Chinese and Persian, and 54 topics and five million documents for Russian. Active learning was used to determine which documents to annotate after being seeded using interactive search and judgment. Documents were judged on a three-grade relevance scale. This paper describes the design and construction of the new test collections and provides baseline results for demonstrating their utility for evaluating systems. 4 authors · Jan 24, 2022
- IruMozhi: Automatically classifying diglossia in Tamil Tamil, a Dravidian language of South Asia, is a highly diglossic language with two very different registers in everyday use: Literary Tamil (preferred in writing and formal communication) and Spoken Tamil (confined to speech and informal media). Spoken Tamil is under-supported in modern NLP systems. In this paper, we release IruMozhi, a human-annotated dataset of parallel text in Literary and Spoken Tamil. We train classifiers on the task of identifying which variety a text belongs to. We use these models to gauge the availability of pretraining data in Spoken Tamil, to audit the composition of existing labelled datasets for Tamil, and to encourage future work on the variety. 2 authors · Nov 13, 2023
- Overview of the TREC 2022 NeuCLIR Track This is the first year of the TREC Neural CLIR (NeuCLIR) track, which aims to study the impact of neural approaches to cross-language information retrieval. The main task in this year's track was ad hoc ranked retrieval of Chinese, Persian, or Russian newswire documents using queries expressed in English. Topics were developed using standard TREC processes, except that topics developed by an annotator for one language were assessed by a different annotator when evaluating that topic on a different language. There were 172 total runs submitted by twelve teams. 7 authors · Apr 24, 2023
1 IDPL-PFOD2: A New Large-Scale Dataset for Printed Farsi Optical Character Recognition Optical Character Recognition is a technique that converts document images into searchable and editable text, making it a valuable tool for processing scanned documents. While the Farsi language stands as a prominent and official language in Asia, efforts to develop efficient methods for recognizing Farsi printed text have been relatively limited. This is primarily attributed to the languages distinctive features, such as cursive form, the resemblance between certain alphabet characters, and the presence of numerous diacritics and dot placement. On the other hand, given the substantial training sample requirements of deep-based architectures for effective performance, the development of such datasets holds paramount significance. In light of these concerns, this paper aims to present a novel large-scale dataset, IDPL-PFOD2, tailored for Farsi printed text recognition. The dataset comprises 2003541 images featuring a wide variety of fonts, styles, and sizes. This dataset is an extension of the previously introduced IDPL-PFOD dataset, offering a substantial increase in both volume and diversity. Furthermore, the datasets effectiveness is assessed through the utilization of both CRNN-based and Vision Transformer architectures. The CRNN-based model achieves a baseline accuracy rate of 78.49% and a normalized edit distance of 97.72%, while the Vision Transformer architecture attains an accuracy of 81.32% and a normalized edit distance of 98.74%. 5 authors · Dec 2, 2023
- S2ORC: The Semantic Scholar Open Research Corpus We introduce S2ORC, a large corpus of 81.1M English-language academic papers spanning many academic disciplines. The corpus consists of rich metadata, paper abstracts, resolved bibliographic references, as well as structured full text for 8.1M open access papers. Full text is annotated with automatically-detected inline mentions of citations, figures, and tables, each linked to their corresponding paper objects. In S2ORC, we aggregate papers from hundreds of academic publishers and digital archives into a unified source, and create the largest publicly-available collection of machine-readable academic text to date. We hope this resource will facilitate research and development of tools and tasks for text mining over academic text. 5 authors · Nov 7, 2019
6 101 Billion Arabic Words Dataset In recent years, Large Language Models have revolutionized the field of natural language processing, showcasing an impressive rise predominantly in English-centric domains. These advancements have set a global benchmark, inspiring significant efforts toward developing Arabic LLMs capable of understanding and generating the Arabic language with remarkable accuracy. Despite these advancements, a critical challenge persists: the potential bias in Arabic LLMs, primarily attributed to their reliance on datasets comprising English data that has been translated into Arabic. This reliance not only compromises the authenticity of the generated content but also reflects a broader issue -the scarcity of original quality Arabic linguistic data. This study aims to address the data scarcity in the Arab world and to encourage the development of Arabic Language Models that are true to both the linguistic and nuances of the region. We undertook a large-scale data mining project, extracting a substantial volume of text from the Common Crawl WET files, specifically targeting Arabic content. The extracted data underwent a rigorous cleaning and deduplication process, using innovative techniques to ensure the integrity and uniqueness of the dataset. The result is the 101 Billion Arabic Words Dataset, the largest Arabic dataset available to date, which can significantly contribute to the development of authentic Arabic LLMs. This study not only highlights the potential for creating linguistically and culturally accurate Arabic LLMs but also sets a precedent for future research in enhancing the authenticity of Arabic language models. 5 authors · Apr 29, 2024
- weighted CapsuleNet networks for Persian multi-domain sentiment analysis Sentiment classification is a fundamental task in natural language processing, assigning one of the three classes, positive, negative, or neutral, to free texts. However, sentiment classification models are highly domain dependent; the classifier may perform classification with reasonable accuracy in one domain but not in another due to the Semantic multiplicity of words getting poor accuracy. This article presents a new Persian/Arabic multi-domain sentiment analysis method using the cumulative weighted capsule networks approach. Weighted capsule ensemble consists of training separate capsule networks for each domain and a weighting measure called domain belonging degree (DBD). This criterion consists of TF and IDF, which calculates the dependency of each document for each domain separately; this value is multiplied by the possible output that each capsule creates. In the end, the sum of these multiplications is the title of the final output, and is used to determine the polarity. And the most dependent domain is considered the final output for each domain. The proposed method was evaluated using the Digikala dataset and obtained acceptable accuracy compared to the existing approaches. It achieved an accuracy of 0.89 on detecting the domain of belonging and 0.99 on detecting the polarity. Also, for the problem of dealing with unbalanced classes, a cost-sensitive function was used. This function was able to achieve 0.0162 improvements in accuracy for sentiment classification. This approach on Amazon Arabic data can achieve 0.9695 accuracies in domain classification. 4 authors · Jun 12, 2023
- PerHalluEval: Persian Hallucination Evaluation Benchmark for Large Language Models Hallucination is a persistent issue affecting all large language Models (LLMs), particularly within low-resource languages such as Persian. PerHalluEval (Persian Hallucination Evaluation) is the first dynamic hallucination evaluation benchmark tailored for the Persian language. Our benchmark leverages a three-stage LLM-driven pipeline, augmented with human validation, to generate plausible answers and summaries regarding QA and summarization tasks, focusing on detecting extrinsic and intrinsic hallucinations. Moreover, we used the log probabilities of generated tokens to select the most believable hallucinated instances. In addition, we engaged human annotators to highlight Persian-specific contexts in the QA dataset in order to evaluate LLMs' performance on content specifically related to Persian culture. Our evaluation of 12 LLMs, including open- and closed-source models using PerHalluEval, revealed that the models generally struggle in detecting hallucinated Persian text. We showed that providing external knowledge, i.e., the original document for the summarization task, could mitigate hallucination partially. Furthermore, there was no significant difference in terms of hallucination when comparing LLMs specifically trained for Persian with others. 5 authors · Sep 25, 2025
- A Framework For Refining Text Classification and Object Recognition from Academic Articles With the widespread use of the internet, it has become increasingly crucial to extract specific information from vast amounts of academic articles efficiently. Data mining techniques are generally employed to solve this issue. However, data mining for academic articles is challenging since it requires automatically extracting specific patterns in complex and unstructured layout documents. Current data mining methods for academic articles employ rule-based(RB) or machine learning(ML) approaches. However, using rule-based methods incurs a high coding cost for complex typesetting articles. On the other hand, simply using machine learning methods requires annotation work for complex content types within the paper, which can be costly. Furthermore, only using machine learning can lead to cases where patterns easily recognized by rule-based methods are mistakenly extracted. To overcome these issues, from the perspective of analyzing the standard layout and typesetting used in the specified publication, we emphasize implementing specific methods for specific characteristics in academic articles. We have developed a novel Text Block Refinement Framework (TBRF), a machine learning and rule-based scheme hybrid. We used the well-known ACL proceeding articles as experimental data for the validation experiment. The experiment shows that our approach achieved over 95% classification accuracy and 90% detection accuracy for tables and figures. 4 authors · May 27, 2023
- FarsInstruct: Empowering Large Language Models for Persian Instruction Understanding Instruction-tuned large language models, such as T0, have demonstrated remarkable capabilities in following instructions across various domains. However, their proficiency remains notably deficient in many low-resource languages. To address this challenge, we introduce FarsInstruct: a comprehensive instruction dataset designed to enhance the instruction-following ability of large language models specifically for the Persian language, a significant yet underrepresented language globally. FarsInstruct encompasses a wide range of task types and datasets, each containing a mix of straightforward to complex manual written instructions, as well as translations from Public Pool of Prompts, ensuring a rich linguistic and cultural representation. Furthermore, we introduce Co-CoLA, a framework designed to enhance the multi-task adaptability of LoRA-tuned models. Through extensive experimental analyses, our study showcases the effectiveness of FarsInstruct dataset coupled with training by Co-CoLA framework, in improving the performance of large language models within the Persian context. As of the current writing, FarsInstruct comprises more than 200 templates across 21 distinct datasets, and we intend to update it consistently, thus augmenting its applicability. 4 authors · Jul 15, 2024
- Overview of the TREC 2023 NeuCLIR Track The principal goal of the TREC Neural Cross-Language Information Retrieval (NeuCLIR) track is to study the impact of neural approaches to cross-language information retrieval. The track has created four collections, large collections of Chinese, Persian, and Russian newswire and a smaller collection of Chinese scientific abstracts. The principal tasks are ranked retrieval of news in one of the three languages, using English topics. Results for a multilingual task, also with English topics but with documents from all three newswire collections, are also reported. New in this second year of the track is a pilot technical documents CLIR task for ranked retrieval of Chinese technical documents using English topics. A total of 220 runs across all tasks were submitted by six participating teams and, as baselines, by track coordinators. Task descriptions and results are presented. 7 authors · Apr 11, 2024
- Pralekha: An Indic Document Alignment Evaluation Benchmark Mining parallel document pairs poses a significant challenge because existing sentence embedding models often have limited context windows, preventing them from effectively capturing document-level information. Another overlooked issue is the lack of concrete evaluation benchmarks comprising high-quality parallel document pairs for assessing document-level mining approaches, particularly for Indic languages. In this study, we introduce Pralekha, a large-scale benchmark for document-level alignment evaluation. Pralekha includes over 2 million documents, with a 1:2 ratio of unaligned to aligned pairs, covering 11 Indic languages and English. Using Pralekha, we evaluate various document-level mining approaches across three dimensions: the embedding models, the granularity levels, and the alignment algorithm. To address the challenge of aligning documents using sentence and chunk-level alignments, we propose a novel scoring method, Document Alignment Coefficient (DAC). DAC demonstrates substantial improvements over baseline pooling approaches, particularly in noisy scenarios, achieving average gains of 20-30% in precision and 15-20% in F1 score. These results highlight DAC's effectiveness in parallel document mining for Indic languages. 6 authors · Nov 28, 2024
- NER- RoBERTa: Fine-Tuning RoBERTa for Named Entity Recognition (NER) within low-resource languages Nowadays, Natural Language Processing (NLP) is an important tool for most people's daily life routines, ranging from understanding speech, translation, named entity recognition (NER), and text categorization, to generative text models such as ChatGPT. Due to the existence of big data and consequently large corpora for widely used languages like English, Spanish, Turkish, Persian, and many more, these applications have been developed accurately. However, the Kurdish language still requires more corpora and large datasets to be included in NLP applications. This is because Kurdish has a rich linguistic structure, varied dialects, and a limited dataset, which poses unique challenges for Kurdish NLP (KNLP) application development. While several studies have been conducted in KNLP for various applications, Kurdish NER (KNER) remains a challenge for many KNLP tasks, including text analysis and classification. In this work, we address this limitation by proposing a methodology for fine-tuning the pre-trained RoBERTa model for KNER. To this end, we first create a Kurdish corpus, followed by designing a modified model architecture and implementing the training procedures. To evaluate the trained model, a set of experiments is conducted to demonstrate the performance of the KNER model using different tokenization methods and trained models. The experimental results show that fine-tuned RoBERTa with the SentencePiece tokenization method substantially improves KNER performance, achieving a 12.8% improvement in F1-score compared to traditional models, and consequently establishes a new benchmark for KNLP. 11 authors · Dec 15, 2024
- Fine-tuning Large Language Models for Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection SemEval-2024 Task 8 introduces the challenge of identifying machine-generated texts from diverse Large Language Models (LLMs) in various languages and domains. The task comprises three subtasks: binary classification in monolingual and multilingual (Subtask A), multi-class classification (Subtask B), and mixed text detection (Subtask C). This paper focuses on Subtask A & B. Each subtask is supported by three datasets for training, development, and testing. To tackle this task, two methods: 1) using traditional machine learning (ML) with natural language preprocessing (NLP) for feature extraction, and 2) fine-tuning LLMs for text classification. The results show that transformer models, particularly LoRA-RoBERTa, exceed traditional ML methods in effectiveness, with majority voting being particularly effective in multilingual contexts for identifying machine-generated texts. 6 authors · Jan 22, 2024
- AlbMoRe: A Corpus of Movie Reviews for Sentiment Analysis in Albanian Lack of available resources such as text corpora for low-resource languages seriously hinders research on natural language processing and computational linguistics. This paper presents AlbMoRe, a corpus of 800 sentiment annotated movie reviews in Albanian. Each text is labeled as positive or negative and can be used for sentiment analysis research. Preliminary results based on traditional machine learning classifiers trained with the AlbMoRe samples are also reported. They can serve as comparison baselines for future research experiments. 1 authors · Jun 14, 2023
- Development of a New Image-to-text Conversion System for Pashto, Farsi and Traditional Chinese We report upon the results of a research and prototype building project Worldly~OCR dedicated to developing new, more accurate image-to-text conversion software for several languages and writing systems. These include the cursive scripts Farsi and Pashto, and Latin cursive scripts. We also describe approaches geared towards Traditional Chinese, which is non-cursive, but features an extremely large character set of 65,000 characters. Our methodology is based on Machine Learning, especially Deep Learning, and Data Science, and is directed towards vast quantities of original documents, exceeding a billion pages. The target audience of this paper is a general audience with interest in Digital Humanities or in retrieval of accurate full-text and metadata from digital images. 4 authors · May 8, 2020
- KazNERD: Kazakh Named Entity Recognition Dataset We present the development of a dataset for Kazakh named entity recognition. The dataset was built as there is a clear need for publicly available annotated corpora in Kazakh, as well as annotation guidelines containing straightforward--but rigorous--rules and examples. The dataset annotation, based on the IOB2 scheme, was carried out on television news text by two native Kazakh speakers under the supervision of the first author. The resulting dataset contains 112,702 sentences and 136,333 annotations for 25 entity classes. State-of-the-art machine learning models to automatise Kazakh named entity recognition were also built, with the best-performing model achieving an exact match F1-score of 97.22% on the test set. The annotated dataset, guidelines, and codes used to train the models are freely available for download under the CC BY 4.0 licence from https://github.com/IS2AI/KazNERD. 3 authors · Nov 26, 2021
- ARPA: Armenian Paraphrase Detection Corpus and Models In this work, we employ a semi-automatic method based on back translation to generate a sentential paraphrase corpus for the Armenian language. The initial collection of sentences is translated from Armenian to English and back twice, resulting in pairs of lexically distant but semantically similar sentences. The generated paraphrases are then manually reviewed and annotated. Using the method train and test datasets are created, containing 2360 paraphrases in total. In addition, the datasets are used to train and evaluate BERTbased models for detecting paraphrase in Armenian, achieving results comparable to the state-of-the-art of other languages. 3 authors · Sep 26, 2020
- Classifier-Based Text Simplification for Improved Machine Translation Machine Translation is one of the research fields of Computational Linguistics. The objective of many MT Researchers is to develop an MT System that produce good quality and high accuracy output translations and which also covers maximum language pairs. As internet and Globalization is increasing day by day, we need a way that improves the quality of translation. For this reason, we have developed a Classifier based Text Simplification Model for English-Hindi Machine Translation Systems. We have used support vector machines and Na\"ive Bayes Classifier to develop this model. We have also evaluated the performance of these classifiers. 4 authors · Jul 12, 2015
- Learning Semantic Correspondences in Technical Documentation We consider the problem of translating high-level textual descriptions to formal representations in technical documentation as part of an effort to model the meaning of such documentation. We focus specifically on the problem of learning translational correspondences between text descriptions and grounded representations in the target documentation, such as formal representation of functions or code templates. Our approach exploits the parallel nature of such documentation, or the tight coupling between high-level text and the low-level representations we aim to learn. Data is collected by mining technical documents for such parallel text-representation pairs, which we use to train a simple semantic parsing model. We report new baseline results on sixteen novel datasets, including the standard library documentation for nine popular programming languages across seven natural languages, and a small collection of Unix utility manuals. 2 authors · May 13, 2017
- Pre-training Methods in Information Retrieval The core of information retrieval (IR) is to identify relevant information from large-scale resources and return it as a ranked list to respond to the user's information need. In recent years, the resurgence of deep learning has greatly advanced this field and leads to a hot topic named NeuIR (i.e., neural information retrieval), especially the paradigm of pre-training methods (PTMs). Owing to sophisticated pre-training objectives and huge model size, pre-trained models can learn universal language representations from massive textual data, which are beneficial to the ranking task of IR. Recently, a large number of works, which are dedicated to the application of PTMs in IR, have been introduced to promote the retrieval performance. Considering the rapid progress of this direction, this survey aims to provide a systematic review of pre-training methods in IR. To be specific, we present an overview of PTMs applied in different components of an IR system, including the retrieval component, the re-ranking component, and other components. In addition, we also introduce PTMs specifically designed for IR, and summarize available datasets as well as benchmark leaderboards. Moreover, we discuss some open challenges and highlight several promising directions, with the hope of inspiring and facilitating more works on these topics for future research. 8 authors · Nov 27, 2021
4 NV-Retriever: Improving text embedding models with effective hard-negative mining Text embedding models have been popular for information retrieval applications such as semantic search and Question-Answering systems based on Retrieval-Augmented Generation (RAG). Those models are typically Transformer models that are fine-tuned with contrastive learning objectives. Many papers introduced new embedding model architectures and training approaches, however, one of the key ingredients, the process of mining negative passages, remains poorly explored or described. One of the challenging aspects of fine-tuning embedding models is the selection of high quality hard-negative passages for contrastive learning. In this paper we propose a family of positive-aware mining methods that leverage the positive relevance score for more effective false negatives removal. We also provide a comprehensive ablation study on hard-negative mining methods over their configurations, exploring different teacher and base models. We demonstrate the efficacy of our proposed methods by introducing the NV-Retriever-v1 model, which scores 60.9 on MTEB Retrieval (BEIR) benchmark and 0.65 points higher than previous methods. The model placed 1st when it was published to MTEB Retrieval on July 07, 2024. 6 authors · Jul 22, 2024
- PyThaiNLP: Thai Natural Language Processing in Python We present PyThaiNLP, a free and open-source natural language processing (NLP) library for Thai language implemented in Python. It provides a wide range of software, models, and datasets for Thai language. We first provide a brief historical context of tools for Thai language prior to the development of PyThaiNLP. We then outline the functionalities it provided as well as datasets and pre-trained language models. We later summarize its development milestones and discuss our experience during its development. We conclude by demonstrating how industrial and research communities utilize PyThaiNLP in their work. The library is freely available at https://github.com/pythainlp/pythainlp. 9 authors · Dec 7, 2023
- Multi-granular Legal Topic Classification on Greek Legislation In this work, we study the task of classifying legal texts written in the Greek language. We introduce and make publicly available a novel dataset based on Greek legislation, consisting of more than 47 thousand official, categorized Greek legislation resources. We experiment with this dataset and evaluate a battery of advanced methods and classifiers, ranging from traditional machine learning and RNN-based methods to state-of-the-art Transformer-based methods. We show that recurrent architectures with domain-specific word embeddings offer improved overall performance while being competitive even to transformer-based models. Finally, we show that cutting-edge multilingual and monolingual transformer-based models brawl on the top of the classifiers' ranking, making us question the necessity of training monolingual transfer learning models as a rule of thumb. To the best of our knowledge, this is the first time the task of Greek legal text classification is considered in an open research project, while also Greek is a language with very limited NLP resources in general. 5 authors · Sep 30, 2021
- EasyNER: A Customizable Easy-to-Use Pipeline for Deep Learning- and Dictionary-based Named Entity Recognition from Medical Text Medical research generates a large number of publications with the PubMed database already containing >35 million research articles. Integration of the knowledge scattered across this large body of literature could provide key insights into physiological mechanisms and disease processes leading to novel medical interventions. However, it is a great challenge for researchers to utilize this information in full since the scale and complexity of the data greatly surpasses human processing abilities. This becomes especially problematic in cases of extreme urgency like the COVID-19 pandemic. Automated text mining can help extract and connect information from the large body of medical research articles. The first step in text mining is typically the identification of specific classes of keywords (e.g., all protein or disease names), so called Named Entity Recognition (NER). Here we present an end-to-end pipeline for NER of typical entities found in medical research articles, including diseases, cells, chemicals, genes/proteins, and species. The pipeline can access and process large medical research article collections (PubMed, CORD-19) or raw text and incorporates a series of deep learning models fine-tuned on the HUNER corpora collection. In addition, the pipeline can perform dictionary-based NER related to COVID-19 and other medical topics. Users can also load their own NER models and dictionaries to include additional entities. The output consists of publication-ready ranked lists and graphs of detected entities and files containing the annotated texts. An associated script allows rapid inspection of the results for specific entities of interest. As model use cases, the pipeline was deployed on two collections of autophagy-related abstracts from PubMed and on the CORD19 dataset, a collection of 764 398 research article abstracts related to COVID-19. 11 authors · Apr 16, 2023
- Exploring the Limitations of Detecting Machine-Generated Text Recent improvements in the quality of the generations by large language models have spurred research into identifying machine-generated text. Systems proposed for the task often achieve high performance. However, humans and machines can produce text in different styles and in different domains, and it remains unclear whether machine generated-text detection models favour particular styles or domains. In this paper, we critically examine the classification performance for detecting machine-generated text by evaluating on texts with varying writing styles. We find that classifiers are highly sensitive to stylistic changes and differences in text complexity, and in some cases degrade entirely to random classifiers. We further find that detection systems are particularly susceptible to misclassify easy-to-read texts while they have high performance for complex texts. 6 authors · Jun 16, 2024
7 UTRNet: High-Resolution Urdu Text Recognition In Printed Documents In this paper, we propose a novel approach to address the challenges of printed Urdu text recognition using high-resolution, multi-scale semantic feature extraction. Our proposed UTRNet architecture, a hybrid CNN-RNN model, demonstrates state-of-the-art performance on benchmark datasets. To address the limitations of previous works, which struggle to generalize to the intricacies of the Urdu script and the lack of sufficient annotated real-world data, we have introduced the UTRSet-Real, a large-scale annotated real-world dataset comprising over 11,000 lines and UTRSet-Synth, a synthetic dataset with 20,000 lines closely resembling real-world and made corrections to the ground truth of the existing IIITH dataset, making it a more reliable resource for future research. We also provide UrduDoc, a benchmark dataset for Urdu text line detection in scanned documents. Additionally, we have developed an online tool for end-to-end Urdu OCR from printed documents by integrating UTRNet with a text detection model. Our work not only addresses the current limitations of Urdu OCR but also paves the way for future research in this area and facilitates the continued advancement of Urdu OCR technology. The project page with source code, datasets, annotations, trained models, and online tool is available at abdur75648.github.io/UTRNet. 3 authors · Jun 27, 2023
1 ManaTTS Persian: a recipe for creating TTS datasets for lower resource languages In this study, we introduce ManaTTS, the most extensive publicly accessible single-speaker Persian corpus, and a comprehensive framework for collecting transcribed speech datasets for the Persian language. ManaTTS, released under the open CC-0 license, comprises approximately 86 hours of audio with a sampling rate of 44.1 kHz. Alongside ManaTTS, we also generated the VirgoolInformal dataset to evaluate Persian speech recognition models used for forced alignment, extending over 5 hours of audio. The datasets are supported by a fully transparent, MIT-licensed pipeline, a testament to innovation in the field. It includes unique tools for sentence tokenization, bounded audio segmentation, and a novel forced alignment method. This alignment technique is specifically designed for low-resource languages, addressing a crucial need in the field. With this dataset, we trained a Tacotron2-based TTS model, achieving a Mean Opinion Score (MOS) of 3.76, which is remarkably close to the MOS of 3.86 for the utterances generated by the same vocoder and natural spectrogram, and the MOS of 4.01 for the natural waveform, demonstrating the exceptional quality and effectiveness of the corpus. 3 authors · Sep 11, 2024
- Dense Text Retrieval based on Pretrained Language Models: A Survey Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval. 4 authors · Nov 27, 2022
- NeuCLIRBench: A Modern Evaluation Collection for Monolingual, Cross-Language, and Multilingual Information Retrieval To measure advances in retrieval, test collections with relevance judgments that can faithfully distinguish systems are required. This paper presents NeuCLIRBench, an evaluation collection for cross-language and multilingual retrieval. The collection consists of documents written natively in Chinese, Persian, and Russian, as well as those same documents machine translated into English. The collection supports several retrieval scenarios including: monolingual retrieval in English, Chinese, Persian, or Russian; cross-language retrieval with English as the query language and one of the other three languages as the document language; and multilingual retrieval, again with English as the query language and relevant documents in all three languages. NeuCLIRBench combines the TREC NeuCLIR track topics of 2022, 2023, and 2024. The 250,128 judgments across approximately 150 queries for the monolingual and cross-language tasks and 100 queries for multilingual retrieval provide strong statistical discriminatory power to distinguish retrieval approaches. A fusion baseline of strong neural retrieval systems is included with the collection so that developers of reranking algorithms are no longer reliant on BM25 as their first-stage retriever. NeuCLIRBench is publicly available. 9 authors · Nov 18, 2025
- Adaptable and Reliable Text Classification using Large Language Models Text classification is fundamental in Natural Language Processing (NLP), and the advent of Large Language Models (LLMs) has revolutionized the field. This paper introduces an adaptable and reliable text classification paradigm, which leverages LLMs as the core component to address text classification tasks. Our system simplifies the traditional text classification workflows, reducing the need for extensive preprocessing and domain-specific expertise to deliver adaptable and reliable text classification results. We evaluated the performance of several LLMs, machine learning algorithms, and neural network-based architectures on four diverse datasets. Results demonstrate that certain LLMs surpass traditional methods in sentiment analysis, spam SMS detection, and multi-label classification. Furthermore, it is shown that the system's performance can be further enhanced through few-shot or fine-tuning strategies, making the fine-tuned model the top performer across all datasets. Source code and datasets are available in this GitHub repository: https://github.com/yeyimilk/llm-zero-shot-classifiers. 4 authors · May 17, 2024
- A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding We provide a literature review about Automatic Text Summarization (ATS) systems. We consider a citation-based approach. We start with some popular and well-known papers that we have in hand about each topic we want to cover and we have tracked the "backward citations" (papers that are cited by the set of papers we knew beforehand) and the "forward citations" (newer papers that cite the set of papers we knew beforehand). In order to organize the different methods, we present the diverse approaches to ATS guided by the mechanisms they use to generate a summary. Besides presenting the methods, we also present an extensive review of the datasets available for summarization tasks and the methods used to evaluate the quality of the summaries. Finally, we present an empirical exploration of these methods using the CNN Corpus dataset that provides golden summaries for extractive and abstractive methods. 7 authors · Jan 4, 2023
- HamRaz: A Culture-Based Persian Conversation Dataset for Person-Centered Therapy Using LLM Agents We present HamRaz, a culturally adapted Persian-language dataset for AI-assisted mental health support, grounded in Person-Centered Therapy (PCT). To reflect real-world therapeutic challenges, we combine script-based dialogue with adaptive large language models (LLM) role-playing, capturing the ambiguity and emotional nuance of Persian-speaking clients. We introduce HamRazEval, a dual-framework for assessing conversational and therapeutic quality using General Metrics and specialized psychological relationship measures. Human evaluations show HamRaz outperforms existing baselines in empathy, coherence, and realism. This resource contributes to the Digital Humanities by bridging language, culture, and mental health in underrepresented communities. 4 authors · Feb 9, 2025
- Bianet: A Parallel News Corpus in Turkish, Kurdish and English We present a new open-source parallel corpus consisting of news articles collected from the Bianet magazine, an online newspaper that publishes Turkish news, often along with their translations in English and Kurdish. In this paper, we describe the collection process of the corpus and its statistical properties. We validate the benefit of using the Bianet corpus by evaluating bilingual and multilingual neural machine translation models in English-Turkish and English-Kurdish directions. 1 authors · May 14, 2018
- Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus Large language models have led to remarkable progress on many NLP tasks, and researchers are turning to ever-larger text corpora to train them. Some of the largest corpora available are made by scraping significant portions of the internet, and are frequently introduced with only minimal documentation. In this work we provide some of the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin by investigating where the data came from, and find a significant amount of text from unexpected sources like patents and US military websites. Then we explore the content of the text itself, and find machine-generated text (e.g., from machine translation systems) and evaluation examples from other benchmark NLP datasets. To understand the impact of the filters applied to create this dataset, we evaluate the text that was removed, and show that blocklist filtering disproportionately removes text from and about minority individuals. Finally, we conclude with some recommendations for how to created and document web-scale datasets from a scrape of the internet. 8 authors · Apr 18, 2021
- RKadiyala at SemEval-2024 Task 8: Black-Box Word-Level Text Boundary Detection in Partially Machine Generated Texts With increasing usage of generative models for text generation and widespread use of machine generated texts in various domains, being able to distinguish between human written and machine generated texts is a significant challenge. While existing models and proprietary systems focus on identifying whether given text is entirely human written or entirely machine generated, only a few systems provide insights at sentence or paragraph level at likelihood of being machine generated at a non reliable accuracy level, working well only for a set of domains and generators. This paper introduces few reliable approaches for the novel task of identifying which part of a given text is machine generated at a word level while comparing results from different approaches and methods. We present a comparison with proprietary systems , performance of our model on unseen domains' and generators' texts. The findings reveal significant improvements in detection accuracy along with comparison on other aspects of detection capabilities. Finally we discuss potential avenues for improvement and implications of our work. The proposed model is also well suited for detecting which parts of a text are machine generated in outputs of Instruct variants of many LLMs. 1 authors · Oct 21, 2024
- CER-HV: A CER-Based Human-in-the-Loop Framework for Cleaning Datasets Applied to Arabic-Script HTR Handwritten text recognition (HTR) for Arabic-script languages still lags behind Latin-script HTR, despite recent advances in model architectures, datasets, and benchmarks. We show that data quality is a significant limiting factor in many published datasets and propose CER-HV (CER-based Ranking with Human Verification) as a framework to detect and clean label errors. CER-HV combines a CER-based noise detector, built on a carefully configured Convolutional Recurrent Neural Network (CRNN) with early stopping to avoid overfitting noisy samples, and a human-in-the-loop (HITL) step that verifies high-ranking samples. The framework reveals that several existing datasets contain previously underreported problems, including transcription, segmentation, orientation, and non-text content errors. These have been identified with up to 90 percent precision in the Muharaf and 80-86 percent in the PHTI datasets. We also show that our CRNN achieves state-of-the-art performance across five of the six evaluated datasets, reaching 8.45 percent Character Error Rate (CER) on KHATT (Arabic), 8.26 percent on PHTI (Pashto), 10.66 percent on Ajami, and 10.11 percent on Muharaf (Arabic), all without any data cleaning. We establish a new baseline of 11.3 percent CER on the PHTD (Persian) dataset. Applying CER-HV improves the evaluation CER by 0.3-0.6 percent on the cleaner datasets and 1.0-1.8 percent on the noisier ones. Although our experiments focus on documents written in an Arabic-script language, including Arabic, Persian, Urdu, Ajami, and Pashto, the framework is general and can be applied to other text recognition datasets. 3 authors · Jan 23
- Mukayese: Turkish NLP Strikes Back Having sufficient resources for language X lifts it from the under-resourced languages class, but not necessarily from the under-researched class. In this paper, we address the problem of the absence of organized benchmarks in the Turkish language. We demonstrate that languages such as Turkish are left behind the state-of-the-art in NLP applications. As a solution, we present Mukayese, a set of NLP benchmarks for the Turkish language that contains several NLP tasks. We work on one or more datasets for each benchmark and present two or more baselines. Moreover, we present four new benchmarking datasets in Turkish for language modeling, sentence segmentation, and spell checking. All datasets and baselines are available under: https://github.com/alisafaya/mukayese 4 authors · Mar 2, 2022
1 Transfer Learning for Low-Resource Sentiment Analysis Sentiment analysis is the process of identifying and extracting subjective information from text. Despite the advances to employ cross-lingual approaches in an automatic way, the implementation and evaluation of sentiment analysis systems require language-specific data to consider various sociocultural and linguistic peculiarities. In this paper, the collection and annotation of a dataset are described for sentiment analysis of Central Kurdish. We explore a few classical machine learning and neural network-based techniques for this task. Additionally, we employ an approach in transfer learning to leverage pretrained models for data augmentation. We demonstrate that data augmentation achieves a high F_1 score and accuracy despite the difficulty of the task. 3 authors · Apr 10, 2023
6 Text Generation: A Systematic Literature Review of Tasks, Evaluation, and Challenges Text generation has become more accessible than ever, and the increasing interest in these systems, especially those using large language models, has spurred an increasing number of related publications. We provide a systematic literature review comprising 244 selected papers between 2017 and 2024. This review categorizes works in text generation into five main tasks: open-ended text generation, summarization, translation, paraphrasing, and question answering. For each task, we review their relevant characteristics, sub-tasks, and specific challenges (e.g., missing datasets for multi-document summarization, coherence in story generation, and complex reasoning for question answering). Additionally, we assess current approaches for evaluating text generation systems and ascertain problems with current metrics. Our investigation shows nine prominent challenges common to all tasks and sub-tasks in recent text generation publications: bias, reasoning, hallucinations, misuse, privacy, interpretability, transparency, datasets, and computing. We provide a detailed analysis of these challenges, their potential solutions, and which gaps still require further engagement from the community. This systematic literature review targets two main audiences: early career researchers in natural language processing looking for an overview of the field and promising research directions, as well as experienced researchers seeking a detailed view of tasks, evaluation methodologies, open challenges, and recent mitigation strategies. 4 authors · May 24, 2024
- Arabic Text Diacritization Using Deep Neural Networks Diacritization of Arabic text is both an interesting and a challenging problem at the same time with various applications ranging from speech synthesis to helping students learning the Arabic language. Like many other tasks or problems in Arabic language processing, the weak efforts invested into this problem and the lack of available (open-source) resources hinder the progress towards solving this problem. This work provides a critical review for the currently existing systems, measures and resources for Arabic text diacritization. Moreover, it introduces a much-needed free-for-all cleaned dataset that can be easily used to benchmark any work on Arabic diacritization. Extracted from the Tashkeela Corpus, the dataset consists of 55K lines containing about 2.3M words. After constructing the dataset, existing tools and systems are tested on it. The results of the experiments show that the neural Shakkala system significantly outperforms traditional rule-based approaches and other closed-source tools with a Diacritic Error Rate (DER) of 2.88% compared with 13.78%, which the best DER for the non-neural approach (obtained by the Mishkal tool). 4 authors · Apr 25, 2019
- SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection We present the results and the main findings of SemEval-2024 Task 8: Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection. The task featured three subtasks. Subtask A is a binary classification task determining whether a text is written by a human or generated by a machine. This subtask has two tracks: a monolingual track focused solely on English texts and a multilingual track. Subtask B is to detect the exact source of a text, discerning whether it is written by a human or generated by a specific LLM. Subtask C aims to identify the changing point within a text, at which the authorship transitions from human to machine. The task attracted a large number of participants: subtask A monolingual (126), subtask A multilingual (59), subtask B (70), and subtask C (30). In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For all subtasks, the best systems used LLMs. 15 authors · Apr 22, 2024
- Masader: Metadata Sourcing for Arabic Text and Speech Data Resources The NLP pipeline has evolved dramatically in the last few years. The first step in the pipeline is to find suitable annotated datasets to evaluate the tasks we are trying to solve. Unfortunately, most of the published datasets lack metadata annotations that describe their attributes. Not to mention, the absence of a public catalogue that indexes all the publicly available datasets related to specific regions or languages. When we consider low-resource dialectical languages, for example, this issue becomes more prominent. In this paper we create Masader, the largest public catalogue for Arabic NLP datasets, which consists of 200 datasets annotated with 25 attributes. Furthermore, We develop a metadata annotation strategy that could be extended to other languages. We also make remarks and highlight some issues about the current status of Arabic NLP datasets and suggest recommendations to address them. 4 authors · Oct 13, 2021
- Bilingual Corpus Mining and Multistage Fine-Tuning for Improving Machine Translation of Lecture Transcripts Lecture transcript translation helps learners understand online courses, however, building a high-quality lecture machine translation system lacks publicly available parallel corpora. To address this, we examine a framework for parallel corpus mining, which provides a quick and effective way to mine a parallel corpus from publicly available lectures on Coursera. To create the parallel corpora, we propose a dynamic programming based sentence alignment algorithm which leverages the cosine similarity of machine-translated sentences. The sentence alignment F1 score reaches 96%, which is higher than using the BERTScore, LASER, or sentBERT methods. For both English--Japanese and English--Chinese lecture translations, we extracted parallel corpora of approximately 50,000 lines and created development and test sets through manual filtering for benchmarking translation performance. Through machine translation experiments, we show that the mined corpora enhance the quality of lecture transcript translation when used in conjunction with out-of-domain parallel corpora via multistage fine-tuning. Furthermore, this study also suggests guidelines for gathering and cleaning corpora, mining parallel sentences, cleaning noise in the mined data, and creating high-quality evaluation splits. For the sake of reproducibility, we have released the corpora as well as the code to create them. The dataset is available at https://github.com/shyyhs/CourseraParallelCorpusMining. 5 authors · Nov 6, 2023
- CSDR-BERT: a pre-trained scientific dataset match model for Chinese Scientific Dataset Retrieval As the number of open and shared scientific datasets on the Internet increases under the open science movement, efficiently retrieving these datasets is a crucial task in information retrieval (IR) research. In recent years, the development of large models, particularly the pre-training and fine-tuning paradigm, which involves pre-training on large models and fine-tuning on downstream tasks, has provided new solutions for IR match tasks. In this study, we use the original BERT token in the embedding layer, improve the Sentence-BERT model structure in the model layer by introducing the SimCSE and K-Nearest Neighbors method, and use the cosent loss function in the optimization phase to optimize the target output. Our experimental results show that our model outperforms other competing models on both public and self-built datasets through comparative experiments and ablation implementations. This study explores and validates the feasibility and efficiency of pre-training techniques for semantic retrieval of Chinese scientific datasets. 7 authors · Jan 30, 2023
3 LLM-Powered Grapheme-to-Phoneme Conversion: Benchmark and Case Study Grapheme-to-phoneme (G2P) conversion is critical in speech processing, particularly for applications like speech synthesis. G2P systems must possess linguistic understanding and contextual awareness of languages with polyphone words and context-dependent phonemes. Large language models (LLMs) have recently demonstrated significant potential in various language tasks, suggesting that their phonetic knowledge could be leveraged for G2P. In this paper, we evaluate the performance of LLMs in G2P conversion and introduce prompting and post-processing methods that enhance LLM outputs without additional training or labeled data. We also present a benchmarking dataset designed to assess G2P performance on sentence-level phonetic challenges of the Persian language. Our results show that by applying the proposed methods, LLMs can outperform traditional G2P tools, even in an underrepresented language like Persian, highlighting the potential of developing LLM-aided G2P systems. 3 authors · Sep 13, 2024 1
11 BioMamba: A Pre-trained Biomedical Language Representation Model Leveraging Mamba The advancement of natural language processing (NLP) in biology hinges on models' ability to interpret intricate biomedical literature. Traditional models often struggle with the complex and domain-specific language in this field. In this paper, we present BioMamba, a pre-trained model specifically designed for biomedical text mining. BioMamba builds upon the Mamba architecture and is pre-trained on an extensive corpus of biomedical literature. Our empirical studies demonstrate that BioMamba significantly outperforms models like BioBERT and general-domain Mamba across various biomedical tasks. For instance, BioMamba achieves a 100 times reduction in perplexity and a 4 times reduction in cross-entropy loss on the BioASQ test set. We provide an overview of the model architecture, pre-training process, and fine-tuning techniques. Additionally, we release the code and trained model to facilitate further research. 4 authors · Aug 5, 2024 2
- Advancing Hungarian Text Processing with HuSpaCy: Efficient and Accurate NLP Pipelines This paper presents a set of industrial-grade text processing models for Hungarian that achieve near state-of-the-art performance while balancing resource efficiency and accuracy. Models have been implemented in the spaCy framework, extending the HuSpaCy toolkit with several improvements to its architecture. Compared to existing NLP tools for Hungarian, all of our pipelines feature all basic text processing steps including tokenization, sentence-boundary detection, part-of-speech tagging, morphological feature tagging, lemmatization, dependency parsing and named entity recognition with high accuracy and throughput. We thoroughly evaluated the proposed enhancements, compared the pipelines with state-of-the-art tools and demonstrated the competitive performance of the new models in all text preprocessing steps. All experiments are reproducible and the pipelines are freely available under a permissive license. 5 authors · Aug 24, 2023
1 Delving into the Utilisation of ChatGPT in Scientific Publications in Astronomy Rapid progress in the capabilities of machine learning approaches in natural language processing has culminated in the rise of large language models over the last two years. Recent works have shown unprecedented adoption of these for academic writing, especially in some fields, but their pervasiveness in astronomy has not been studied sufficiently. To remedy this, we extract words that ChatGPT uses more often than humans when generating academic text and search a total of 1 million articles for them. This way, we assess the frequency of word occurrence in published works in astronomy tracked by the NASA Astrophysics Data System since 2000. We then perform a statistical analysis of the occurrences. We identify a list of words favoured by ChatGPT and find a statistically significant increase for these words against a control group in 2024, which matches the trend in other disciplines. These results suggest a widespread adoption of these models in the writing of astronomy papers. We encourage organisations, publishers, and researchers to work together to identify ethical and pragmatic guidelines to maximise the benefits of these systems while maintaining scientific rigour. 4 authors · Jun 25, 2024
- Samanantar: The Largest Publicly Available Parallel Corpora Collection for 11 Indic Languages We present Samanantar, the largest publicly available parallel corpora collection for Indic languages. The collection contains a total of 49.7 million sentence pairs between English and 11 Indic languages (from two language families). Specifically, we compile 12.4 million sentence pairs from existing, publicly-available parallel corpora, and additionally mine 37.4 million sentence pairs from the web, resulting in a 4x increase. We mine the parallel sentences from the web by combining many corpora, tools, and methods: (a) web-crawled monolingual corpora, (b) document OCR for extracting sentences from scanned documents, (c) multilingual representation models for aligning sentences, and (d) approximate nearest neighbor search for searching in a large collection of sentences. Human evaluation of samples from the newly mined corpora validate the high quality of the parallel sentences across 11 languages. Further, we extract 83.4 million sentence pairs between all 55 Indic language pairs from the English-centric parallel corpus using English as the pivot language. We trained multilingual NMT models spanning all these languages on Samanantar, which outperform existing models and baselines on publicly available benchmarks, such as FLORES, establishing the utility of Samanantar. Our data and models are available publicly at https://indicnlp.ai4bharat.org/samanantar/ and we hope they will help advance research in NMT and multilingual NLP for Indic languages. 18 authors · Apr 12, 2021
1 Crafting Tomorrow's Headlines: Neural News Generation and Detection in English, Turkish, Hungarian, and Persian In the era dominated by information overload and its facilitation with Large Language Models (LLMs), the prevalence of misinformation poses a significant threat to public discourse and societal well-being. A critical concern at present involves the identification of machine-generated news. In this work, we take a significant step by introducing a benchmark dataset designed for neural news detection in four languages: English, Turkish, Hungarian, and Persian. The dataset incorporates outputs from multiple multilingual generators (in both, zero-shot and fine-tuned setups) such as BloomZ, LLaMa-2, Mistral, Mixtral, and GPT-4. Next, we experiment with a variety of classifiers, ranging from those based on linguistic features to advanced Transformer-based models and LLMs prompting. We present the detection results aiming to delve into the interpretablity and robustness of machine-generated texts detectors across all target languages. 6 authors · Aug 20, 2024
- Topic Discovery in Massive Text Corpora Based on Min-Hashing The task of discovering topics in text corpora has been dominated by Latent Dirichlet Allocation and other Topic Models for over a decade. In order to apply these approaches to massive text corpora, the vocabulary needs to be reduced considerably and large computer clusters and/or GPUs are typically required. Moreover, the number of topics must be provided beforehand but this depends on the corpus characteristics and it is often difficult to estimate, especially for massive text corpora. Unfortunately, both topic quality and time complexity are sensitive to this choice. This paper describes an alternative approach to discover topics based on Min-Hashing, which can handle massive text corpora and large vocabularies using modest computer hardware and does not require to fix the number of topics in advance. The basic idea is to generate multiple random partitions of the corpus vocabulary to find sets of highly co-occurring words, which are then clustered to produce the final topics. In contrast to probabilistic topic models where topics are distributions over the complete vocabulary, the topics discovered by the proposed approach are sets of highly co-occurring words. Interestingly, these topics underlie various thematics with different levels of granularity. An extensive qualitative and quantitative evaluation using the 20 Newsgroups (18K), Reuters (800K), Spanish Wikipedia (1M), and English Wikipedia (5M) corpora shows that the proposed approach is able to consistently discover meaningful and coherent topics. Remarkably, the time complexity of the proposed approach is linear with respect to corpus and vocabulary size; a non-parallel implementation was able to discover topics from the entire English edition of Wikipedia with over 5 million documents and 1 million words in less than 7 hours. 2 authors · Jul 2, 2018
1 VBART: The Turkish LLM We present VBART, the first Turkish sequence-to-sequence Large Language Models (LLMs) pre-trained on a large corpus from scratch. VBART are compact LLMs based on good ideas leveraged from BART and mBART models and come in two sizes, Large and XLarge. Fine-tuned VBART models surpass the prior state-of-the-art results in abstractive text summarization, title generation, text paraphrasing, question answering and question generation tasks. They allow fine-tuning for future text generation tasks and datasets, carving a new path for Turkish Natural Language Processing (NLP) research. Our work shows that having a pre-trained LLM for Turkish outperforms up to 3x multilingual models, improving existing results and providing efficient models for training and inference. Moreover, we show that our monolingual tokenizer is 7x more efficient than OpenAI's multilingual tokenizer. Last but not least, we introduce a method to enlarge an existing pre-trained LLM and question the relevancy of Chinchilla Scaling Law to sequence-to-sequence masked language models. Our fine-tuned models, tokenizer and cleaned web corpus of 135 GB are publicly available at huggingface.co/vngrs-ai. 3 authors · Mar 2, 2024 1
- Robust Detection of LLM-Generated Text: A Comparative Analysis The ability of large language models to generate complex texts allows them to be widely integrated into many aspects of life, and their output can quickly fill all network resources. As the impact of LLMs grows, it becomes increasingly important to develop powerful detectors for the generated text. This detector is essential to prevent the potential misuse of these technologies and to protect areas such as social media from the negative effects of false content generated by LLMS. The main goal of LLM-generated text detection is to determine whether text is generated by an LLM, which is a basic binary classification task. In our work, we mainly use three different classification methods based on open source datasets: traditional machine learning techniques such as logistic regression, k-means clustering, Gaussian Naive Bayes, support vector machines, and methods based on converters such as BERT, and finally algorithms that use LLMs to detect LLM-generated text. We focus on model generalization, potential adversarial attacks, and accuracy of model evaluation. Finally, the possible research direction in the future is proposed, and the current experimental results are summarized. 2 authors · Nov 9, 2024
1 The Arabic AI Fingerprint: Stylometric Analysis and Detection of Large Language Models Text Large Language Models (LLMs) have achieved unprecedented capabilities in generating human-like text, posing subtle yet significant challenges for information integrity across critical domains, including education, social media, and academia, enabling sophisticated misinformation campaigns, compromising healthcare guidance, and facilitating targeted propaganda. This challenge becomes severe, particularly in under-explored and low-resource languages like Arabic. This paper presents a comprehensive investigation of Arabic machine-generated text, examining multiple generation strategies (generation from the title only, content-aware generation, and text refinement) across diverse model architectures (ALLaM, Jais, Llama, and GPT-4) in academic, and social media domains. Our stylometric analysis reveals distinctive linguistic patterns differentiating human-written from machine-generated Arabic text across these varied contexts. Despite their human-like qualities, we demonstrate that LLMs produce detectable signatures in their Arabic outputs, with domain-specific characteristics that vary significantly between different contexts. Based on these insights, we developed BERT-based detection models that achieved exceptional performance in formal contexts (up to 99.9\% F1-score) with strong precision across model architectures. Our cross-domain analysis confirms generalization challenges previously reported in the literature. To the best of our knowledge, this work represents the most comprehensive investigation of Arabic machine-generated text to date, uniquely combining multiple prompt generation methods, diverse model architectures, and in-depth stylometric analysis across varied textual domains, establishing a foundation for developing robust, linguistically-informed detection systems essential for preserving information integrity in Arabic-language contexts. 2 authors · May 29, 2025
- GenAI Content Detection Task 1: English and Multilingual Machine-Generated Text Detection: AI vs. Human We present the GenAI Content Detection Task~1 -- a shared task on binary machine generated text detection, conducted as a part of the GenAI workshop at COLING 2025. The task consists of two subtasks: Monolingual (English) and Multilingual. The shared task attracted many participants: 36 teams made official submissions to the Monolingual subtask during the test phase and 26 teams -- to the Multilingual. We provide a comprehensive overview of the data, a summary of the results -- including system rankings and performance scores -- detailed descriptions of the participating systems, and an in-depth analysis of submissions. https://github.com/mbzuai-nlp/COLING-2025-Workshop-on-MGT-Detection-Task1 26 authors · Jan 19, 2025
1 NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages Democratizing access to natural language processing (NLP) technology is crucial, especially for underrepresented and extremely low-resource languages. Previous research has focused on developing labeled and unlabeled corpora for these languages through online scraping and document translation. While these methods have proven effective and cost-efficient, we have identified limitations in the resulting corpora, including a lack of lexical diversity and cultural relevance to local communities. To address this gap, we conduct a case study on Indonesian local languages. We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets. Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content. In addition, we present the benchmark, encompassing 12 underrepresented and extremely low-resource languages spoken by millions of individuals in Indonesia. Our empirical experiment results using existing multilingual large language models conclude the need to extend these models to more underrepresented languages. We release the NusaWrites dataset at https://github.com/IndoNLP/nusa-writes. 18 authors · Sep 19, 2023
- A Survey on Retrieval-Augmented Text Generation Recently, retrieval-augmented text generation attracted increasing attention of the computational linguistics community. Compared with conventional generation models, retrieval-augmented text generation has remarkable advantages and particularly has achieved state-of-the-art performance in many NLP tasks. This paper aims to conduct a survey about retrieval-augmented text generation. It firstly highlights the generic paradigm of retrieval-augmented generation, and then it reviews notable approaches according to different tasks including dialogue response generation, machine translation, and other generation tasks. Finally, it points out some important directions on top of recent methods to facilitate future research. 5 authors · Feb 2, 2022
2 The Knesset Corpus: An Annotated Corpus of Hebrew Parliamentary Proceedings We present the Knesset Corpus, a corpus of Hebrew parliamentary proceedings containing over 30 million sentences (over 384 million tokens) from all the (plenary and committee) protocols held in the Israeli parliament between 1998 and 2022. Sentences are annotated with morpho-syntactic information and are associated with detailed meta-information reflecting demographic and political properties of the speakers, based on a large database of parliament members and factions that we compiled. We discuss the structure and composition of the corpus and the various processing steps we applied to it. To demonstrate the utility of this novel dataset we present two use cases. We show that the corpus can be used to examine historical developments in the style of political discussions by showing a reduction in lexical richness in the proceedings over time. We also investigate some differences between the styles of men and women speakers. These use cases exemplify the potential of the corpus to shed light on important trends in the Israeli society, supporting research in linguistics, political science, communication, law, etc. 5 authors · May 28, 2024
- Named entity recognition in chemical patents using ensemble of contextual language models Chemical patent documents describe a broad range of applications holding key reaction and compound information, such as chemical structure, reaction formulas, and molecular properties. These informational entities should be first identified in text passages to be utilized in downstream tasks. Text mining provides means to extract relevant information from chemical patents through information extraction techniques. As part of the Information Extraction task of the Cheminformatics Elsevier Melbourne University challenge, in this work we study the effectiveness of contextualized language models to extract reaction information in chemical patents. We assess transformer architectures trained on a generic and specialised corpora to propose a new ensemble model. Our best model, based on a majority ensemble approach, achieves an exact F1-score of 92.30% and a relaxed F1-score of 96.24%. The results show that ensemble of contextualized language models can provide an effective method to extract information from chemical patents. 5 authors · Jul 24, 2020
- A Large-Scale Study of Machine Translation in the Turkic Languages Recent advances in neural machine translation (NMT) have pushed the quality of machine translation systems to the point where they are becoming widely adopted to build competitive systems. However, there is still a large number of languages that are yet to reap the benefits of NMT. In this paper, we provide the first large-scale case study of the practical application of MT in the Turkic language family in order to realize the gains of NMT for Turkic languages under high-resource to extremely low-resource scenarios. In addition to presenting an extensive analysis that identifies the bottlenecks towards building competitive systems to ameliorate data scarcity, our study has several key contributions, including, i) a large parallel corpus covering 22 Turkic languages consisting of common public datasets in combination with new datasets of approximately 2 million parallel sentences, ii) bilingual baselines for 26 language pairs, iii) novel high-quality test sets in three different translation domains and iv) human evaluation scores. All models, scripts, and data will be released to the public. 16 authors · Sep 9, 2021
- Vietnamese AI Generated Text Detection In recent years, Large Language Models (LLMs) have become integrated into our daily lives, serving as invaluable assistants in completing tasks. Widely embraced by users, the abuse of LLMs is inevitable, particularly in using them to generate text content for various purposes, leading to difficulties in distinguishing between text generated by LLMs and that written by humans. In this study, we present a dataset named ViDetect, comprising 6.800 samples of Vietnamese essay, with 3.400 samples authored by humans and the remainder generated by LLMs, serving the purpose of detecting text generated by AI. We conducted evaluations using state-of-the-art methods, including ViT5, BartPho, PhoBERT, mDeberta V3, and mBERT. These results contribute not only to the growing body of research on detecting text generated by AI but also demonstrate the adaptability and effectiveness of different methods in the Vietnamese language context. This research lays the foundation for future advancements in AI-generated text detection and provides valuable insights for researchers in the field of natural language processing. 5 authors · May 6, 2024
- LaoPLM: Pre-trained Language Models for Lao Trained on the large corpus, pre-trained language models (PLMs) can capture different levels of concepts in context and hence generate universal language representations. They can benefit multiple downstream natural language processing (NLP) tasks. Although PTMs have been widely used in most NLP applications, especially for high-resource languages such as English, it is under-represented in Lao NLP research. Previous work on Lao has been hampered by the lack of annotated datasets and the sparsity of language resources. In this work, we construct a text classification dataset to alleviate the resource-scare situation of the Lao language. We additionally present the first transformer-based PTMs for Lao with four versions: BERT-small, BERT-base, ELECTRA-small and ELECTRA-base, and evaluate it over two downstream tasks: part-of-speech tagging and text classification. Experiments demonstrate the effectiveness of our Lao models. We will release our models and datasets to the community, hoping to facilitate the future development of Lao NLP applications. 5 authors · Oct 12, 2021
1 Technical Report on the Pangram AI-Generated Text Classifier We present Pangram Text, a transformer-based neural network trained to distinguish text written by large language models from text written by humans. Pangram Text outperforms zero-shot methods such as DetectGPT as well as leading commercial AI detection tools with over 38 times lower error rates on a comprehensive benchmark comprised of 10 text domains (student writing, creative writing, scientific writing, books, encyclopedias, news, email, scientific papers, short-form Q&A) and 8 open- and closed-source large language models. We propose a training algorithm, hard negative mining with synthetic mirrors, that enables our classifier to achieve orders of magnitude lower false positive rates on high-data domains such as reviews. Finally, we show that Pangram Text is not biased against nonnative English speakers and generalizes to domains and models unseen during training. 2 authors · Feb 21, 2024
6 Retrieval-Enhanced Machine Learning: Synthesis and Opportunities In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research. 5 authors · Jul 17, 2024 2
3 CMHG: A Dataset and Benchmark for Headline Generation of Minority Languages in China Minority languages in China, such as Tibetan, Uyghur, and Traditional Mongolian, face significant challenges due to their unique writing systems, which differ from international standards. This discrepancy has led to a severe lack of relevant corpora, particularly for supervised tasks like headline generation. To address this gap, we introduce a novel dataset, Chinese Minority Headline Generation (CMHG), which includes 100,000 entries for Tibetan, and 50,000 entries each for Uyghur and Mongolian, specifically curated for headline generation tasks. Additionally, we propose a high-quality test set annotated by native speakers, designed to serve as a benchmark for future research in this domain. We hope this dataset will become a valuable resource for advancing headline generation in Chinese minority languages and contribute to the development of related benchmarks. 7 authors · Sep 12, 2025 4
- KazSAnDRA: Kazakh Sentiment Analysis Dataset of Reviews and Attitudes This paper presents KazSAnDRA, a dataset developed for Kazakh sentiment analysis that is the first and largest publicly available dataset of its kind. KazSAnDRA comprises an extensive collection of 180,064 reviews obtained from various sources and includes numerical ratings ranging from 1 to 5, providing a quantitative representation of customer attitudes. The study also pursued the automation of Kazakh sentiment classification through the development and evaluation of four machine learning models trained for both polarity classification and score classification. Experimental analysis included evaluation of the results considering both balanced and imbalanced scenarios. The most successful model attained an F1-score of 0.81 for polarity classification and 0.39 for score classification on the test sets. The dataset and fine-tuned models are open access and available for download under the Creative Commons Attribution 4.0 International License (CC BY 4.0) through our GitHub repository. 2 authors · Mar 28, 2024
- CLIRudit: Cross-Lingual Information Retrieval of Scientific Documents Cross-lingual information retrieval (CLIR) consists in finding relevant documents in a language that differs from the language of the queries. This paper presents CLIRudit, a new dataset created to evaluate cross-lingual academic search, focusing on English queries and French documents. The dataset is built using bilingual article metadata from \'Erudit, a Canadian publishing platform, and is designed to represent scenarios in which researchers search for scholarly content in languages other than English. We perform a comprehensive benchmarking of different zero-shot first-stage retrieval methods on the dataset, including dense and sparse retrievers, query and document machine translation, and state-of-the-art multilingual retrievers. Our results show that large dense retrievers, not necessarily trained for the cross-lingual retrieval task, can achieve zero-shot performance comparable to using ground truth human translations, without the need for machine translation. Sparse retrievers, such as BM25 or SPLADE, combined with document translation, show competitive results, providing an efficient alternative to large dense models. This research advances the understanding of cross-lingual academic information retrieval and provides a framework that others can use to build comparable datasets across different languages and disciplines. By making the dataset and code publicly available, we aim to facilitate further research that will help make scientific knowledge more accessible across language barriers. 3 authors · Apr 22, 2025
- KazParC: Kazakh Parallel Corpus for Machine Translation We introduce KazParC, a parallel corpus designed for machine translation across Kazakh, English, Russian, and Turkish. The first and largest publicly available corpus of its kind, KazParC contains a collection of 371,902 parallel sentences covering different domains and developed with the assistance of human translators. Our research efforts also extend to the development of a neural machine translation model nicknamed Tilmash. Remarkably, the performance of Tilmash is on par with, and in certain instances, surpasses that of industry giants, such as Google Translate and Yandex Translate, as measured by standard evaluation metrics, such as BLEU and chrF. Both KazParC and Tilmash are openly available for download under the Creative Commons Attribution 4.0 International License (CC BY 4.0) through our GitHub repository. 3 authors · Mar 28, 2024
1 M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box Machine-Generated Text Detection Large language models (LLMs) have demonstrated remarkable capability to generate fluent responses to a wide variety of user queries, but this has also resulted in concerns regarding the potential misuse of such texts in journalism, educational, and academic context. In this work, we aim to develop automatic systems to identify machine-generated text and to detect potential misuse. We first introduce a large-scale benchmark M4, which is multi-generator, multi-domain, and multi-lingual corpus for machine-generated text detection. Using the dataset, we experiment with a number of methods and we show that it is challenging for detectors to generalize well on unseen examples if they are either from different domains or are generated by different large language models. In such cases, detectors tend to misclassify machine-generated text as human-written. These results show that the problem is far from solved and there is a lot of room for improvement. We believe that our dataset M4, which covers different generators, domains and languages, will enable future research towards more robust approaches for this pressing societal problem. The M4 dataset is available at https://github.com/mbzuai-nlp/M4. 11 authors · May 24, 2023
6 Leveraging Corpus Metadata to Detect Template-based Translation: An Exploratory Case Study of the Egyptian Arabic Wikipedia Edition Wikipedia articles (content pages) are commonly used corpora in Natural Language Processing (NLP) research, especially in low-resource languages other than English. Yet, a few research studies have studied the three Arabic Wikipedia editions, Arabic Wikipedia (AR), Egyptian Arabic Wikipedia (ARZ), and Moroccan Arabic Wikipedia (ARY), and documented issues in the Egyptian Arabic Wikipedia edition regarding the massive automatic creation of its articles using template-based translation from English to Arabic without human involvement, overwhelming the Egyptian Arabic Wikipedia with articles that do not only have low-quality content but also with articles that do not represent the Egyptian people, their culture, and their dialect. In this paper, we aim to mitigate the problem of template translation that occurred in the Egyptian Arabic Wikipedia by identifying these template-translated articles and their characteristics through exploratory analysis and building automatic detection systems. We first explore the content of the three Arabic Wikipedia editions in terms of density, quality, and human contributions and utilize the resulting insights to build multivariate machine learning classifiers leveraging articles' metadata to detect the template-translated articles automatically. We then publicly deploy and host the best-performing classifier, XGBoost, as an online application called EGYPTIAN WIKIPEDIA SCANNER and release the extracted, filtered, and labeled datasets to the research community to benefit from our datasets and the online, web-based detection system. 5 authors · Mar 31, 2024
- Deep Learning, Machine Learning, Advancing Big Data Analytics and Management Advancements in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management into pivotal domains for research and application. This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies, emphasizing their role in uncovering actionable insights from massive, high-dimensional datasets. The study presents a systematic overview of data preprocessing techniques, including data cleaning, normalization, integration, and dimensionality reduction, to prepare raw data for analysis. Core analytics methodologies such as classification, clustering, regression, and anomaly detection are examined, with a focus on algorithmic innovation and scalability. Furthermore, the text delves into state-of-the-art frameworks for data mining and predictive modeling, highlighting the role of neural networks, support vector machines, and ensemble methods in tackling complex analytical challenges. Special emphasis is placed on the convergence of big data with distributed computing paradigms, including cloud and edge computing, to address challenges in storage, computation, and real-time analytics. The integration of ethical considerations, including data privacy and compliance with global standards, ensures a holistic perspective on data management. Practical applications across healthcare, finance, marketing, and policy-making illustrate the real-world impact of these technologies. Through comprehensive case studies and Python-based implementations, this work equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics. It bridges the gap between theory and practice, fostering the development of innovative solutions for managing and leveraging data in the era of artificial intelligence. 26 authors · Dec 3, 2024