new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Collaborative Perceiver: Elevating Vision-based 3D Object Detection via Local Density-Aware Spatial Occupancy

Vision-based bird's-eye-view (BEV) 3D object detection has advanced significantly in autonomous driving by offering cost-effectiveness and rich contextual information. However, existing methods often construct BEV representations by collapsing extracted object features, neglecting intrinsic environmental contexts, such as roads and pavements. This hinders detectors from comprehensively perceiving the characteristics of the physical world. To alleviate this, we introduce a multi-task learning framework, Collaborative Perceiver (CoP), that leverages spatial occupancy as auxiliary information to mine consistent structural and conceptual similarities shared between 3D object detection and occupancy prediction tasks, bridging gaps in spatial representations and feature refinement. To this end, we first propose a pipeline to generate dense occupancy ground truths incorporating local density information (LDO) for reconstructing detailed environmental information. Next, we employ a voxel-height-guided sampling (VHS) strategy to distill fine-grained local features according to distinct object properties. Furthermore, we develop a global-local collaborative feature fusion (CFF) module that seamlessly integrates complementary knowledge between both tasks, thus composing more robust BEV representations. Extensive experiments on the nuScenes benchmark demonstrate that CoP outperforms existing vision-based frameworks, achieving 49.5\% mAP and 59.2\% NDS on the test set. Code and supplementary materials are available at this link https://github.com/jichengyuan/Collaborative-Perceiver.

  • 5 authors
·
Jul 28

Removing Averaging: Personalized Lip-Sync Driven Characters Based on Identity Adapter

Recent advances in diffusion-based lip-syncing generative models have demonstrated their ability to produce highly synchronized talking face videos for visual dubbing. Although these models excel at lip synchronization, they often struggle to maintain fine-grained control over facial details in generated images. In this work, we identify "lip averaging" phenomenon where the model fails to preserve subtle facial details when dubbing unseen in-the-wild videos. This issue arises because the commonly used UNet backbone primarily integrates audio features into visual representations in the latent space via cross-attention mechanisms and multi-scale fusion, but it struggles to retain fine-grained lip details in the generated faces. To address this issue, we propose UnAvgLip, which extracts identity embeddings from reference videos to generate highly faithful facial sequences while maintaining accurate lip synchronization. Specifically, our method comprises two primary components: (1) an Identity Perceiver module that encodes facial embeddings to align with conditioned audio features; and (2) an ID-CrossAttn module that injects facial embeddings into the generation process, enhancing model's capability of identity retention. Extensive experiments demonstrate that, at a modest training and inference cost, UnAvgLip effectively mitigates the "averaging" phenomenon in lip inpainting, significantly preserving unique facial characteristics while maintaining precise lip synchronization. Compared with the original approach, our method demonstrates significant improvements of 5% on the identity consistency metric and 2% on the SSIM metric across two benchmark datasets (HDTF and LRW).

  • 5 authors
·
Mar 8

Semiotics Networks Representing Perceptual Inference

Every day, humans perceive objects and communicate these perceptions through various channels. In this paper, we present a computational model designed to track and simulate the perception of objects, as well as their representations as conveyed in communication. We delineate two fundamental components of our internal representation, termed "observed" and "seen", which we correlate with established concepts in computer vision, namely encoding and decoding. These components are integrated into semiotic networks, which simulate perceptual inference of object perception and human communication. Our model of object perception by a person allows us to define object perception by {\em a network}. We demonstrate this with an example of an image baseline classifier by constructing a new network that includes the baseline classifier and an additional layer. This layer produces the images "perceived" by the entire network, transforming it into a perceptualized image classifier. This facilitates visualization of the acquired network. Within our network, the image representations become more efficient for classification tasks when they are assembled and randomized. In our experiments, the perceptualized network outperformed the baseline classifier on MNIST training databases consisting of a restricted number of images. Our model is not limited to persons and can be applied to any system featuring a loop involving the processing from "internal" to "external" representations.

  • 2 authors
·
Oct 8, 2023

Uni-Perceiver: Pre-training Unified Architecture for Generic Perception for Zero-shot and Few-shot Tasks

Biological intelligence systems of animals perceive the world by integrating information in different modalities and processing simultaneously for various tasks. In contrast, current machine learning research follows a task-specific paradigm, leading to inefficient collaboration between tasks and high marginal costs of developing perception models for new tasks. In this paper, we present a generic perception architecture named Uni-Perceiver, which processes a variety of modalities and tasks with unified modeling and shared parameters. Specifically, Uni-Perceiver encodes different task inputs and targets from arbitrary modalities into a unified representation space with a modality-agnostic Transformer encoder and lightweight modality-specific tokenizers. Different perception tasks are modeled as the same formulation, that is, finding the maximum likelihood target for each input through the similarity of their representations. The model is pre-trained on several uni-modal and multi-modal tasks, and evaluated on a variety of downstream tasks, including novel tasks that did not appear in the pre-training stage. Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks. The performance can be improved to a level close to state-of-the-art methods by conducting prompt tuning on 1% of downstream task data. Full-data fine-tuning further delivers results on par with or better than state-of-the-art results. Code shall be released.

  • 8 authors
·
Dec 2, 2021

SRUM: Fine-Grained Self-Rewarding for Unified Multimodal Models

Recently, remarkable progress has been made in Unified Multimodal Models (UMMs), which integrate vision-language generation and understanding capabilities within a single framework. However, a significant gap exists where a model's strong visual understanding often fails to transfer to its visual generation. A model might correctly understand an image based on user instructions, yet be unable to generate a faithful image from text prompts. This phenomenon directly raises a compelling question: Can a model achieve self-improvement by using its understanding module to reward its generation module? To bridge this gap and achieve self-improvement, we introduce SRUM, a self-rewarding post-training framework that can be directly applied to existing UMMs of various designs. SRUM creates a feedback loop where the model's own understanding module acts as an internal ``evaluator'', providing corrective signals to improve its generation module, without requiring additional human-labeled data. To ensure this feedback is comprehensive, we designed a global-local dual reward system. To tackle the inherent structural complexity of images, this system offers multi-scale guidance: a global reward ensures the correctness of the overall visual semantics and layout, while a local reward refines fine-grained, object-level fidelity. SRUM leads to powerful capabilities and shows strong generalization, boosting performance on T2I-CompBench from 82.18 to 88.37 and on T2I-ReasonBench from 43.82 to 46.75. Overall, our work establishes a powerful new paradigm for enabling a UMMs' understanding module to guide and enhance its own generation via self-rewarding.

Learning the Visualness of Text Using Large Vision-Language Models

Visual text evokes an image in a person's mind, while non-visual text fails to do so. A method to automatically detect visualness in text will unlock the ability to augment text with relevant images, as neural text-to-image generation and retrieval models operate on the implicit assumption that the input text is visual in nature. We curate a dataset of 3,620 English sentences and their visualness scores provided by multiple human annotators. Additionally, we use documents that contain text and visual assets to create a distantly supervised corpus of document text and associated images. We also propose a fine-tuning strategy that adapts large vision-language models like CLIP that assume a one-to-one correspondence between text and image to the task of scoring text visualness from text input alone. Our strategy involves modifying the model's contrastive learning objective to map text identified as non-visual to a common NULL image while matching visual text to their corresponding images in the document. We evaluate the proposed approach on its ability to (i) classify visual and non-visual text accurately, and (ii) attend over words that are identified as visual in psycholinguistic studies. Empirical evaluation indicates that our approach performs better than several heuristics and baseline models for the proposed task. Furthermore, to highlight the importance of modeling the visualness of text, we conduct qualitative analyses of text-to-image generation systems like DALL-E.

  • 5 authors
·
May 11, 2023

Perceptual Taxonomy: Evaluating and Guiding Hierarchical Scene Reasoning in Vision-Language Models

We propose Perceptual Taxonomy, a structured process of scene understanding that first recognizes objects and their spatial configurations, then infers task-relevant properties such as material, affordance, function, and physical attributes to support goal-directed reasoning. While this form of reasoning is fundamental to human cognition, current vision-language benchmarks lack comprehensive evaluation of this ability and instead focus on surface-level recognition or image-text alignment. To address this gap, we introduce Perceptual Taxonomy, a benchmark for physically grounded visual reasoning. We annotate 3173 objects with four property families covering 84 fine-grained attributes. Using these annotations, we construct a multiple-choice question benchmark with 5802 images across both synthetic and real domains. The benchmark contains 28033 template-based questions spanning four types (object description, spatial reasoning, property matching, and taxonomy reasoning), along with 50 expert-crafted questions designed to evaluate models across the full spectrum of perceptual taxonomy reasoning. Experimental results show that leading vision-language models perform well on recognition tasks but degrade by 10 to 20 percent on property-driven questions, especially those requiring multi-step reasoning over structured attributes. These findings highlight a persistent gap in structured visual understanding and the limitations of current models that rely heavily on pattern matching. We also show that providing in-context reasoning examples from simulated scenes improves performance on real-world and expert-curated questions, demonstrating the effectiveness of perceptual-taxonomy-guided prompting.

From Perception to Cognition: A Survey of Vision-Language Interactive Reasoning in Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) strive to achieve a profound, human-like understanding of and interaction with the physical world, but often exhibit a shallow and incoherent integration when acquiring information (Perception) and conducting reasoning (Cognition). This disconnect leads to a spectrum of reasoning failures, with hallucination being the most prominent. Collectively, these issues expose a fundamental challenge: the ability to process pixels does not yet confer the ability to construct a coherent, credible internal world model. To systematically dissect and address this challenge, this survey introduces a novel and unified analytical framework: ``From Perception to Cognition." We deconstruct the complex process of vision-language interactive understanding into two interdependent layers: Perception, the foundational ability to accurately extract visual information and achieve fine-grained alignment with textual instructions; and Cognition, the higher-order capability for proactive, multi-step, goal-oriented reasoning built upon this perceptual foundation, the core of which is the formation of a dynamic observe-think-verify reasoning loop. Guided by this framework, this paper systematically analyzes the key bottlenecks of current MLLMs at both layers. It surveys the landscape of cutting-edge methods designed to address these challenges, spanning from techniques that enhance low-level visual representations to those that improve high-level reasoning paradigms. Furthermore, we review critical benchmarks and delineate future research directions. This survey aims to provide the research community with a clear, structured perspective for understanding the intrinsic limitations of current MLLMs and to illuminate the path toward building next-generation models capable of deep reasoning and a genuine understanding of the world.

  • 22 authors
·
Sep 29

What You Perceive Is What You Conceive: A Cognition-Inspired Framework for Open Vocabulary Image Segmentation

Open vocabulary image segmentation tackles the challenge of recognizing dynamically adjustable, predefined novel categories at inference time by leveraging vision-language alignment. However, existing paradigms typically perform class-agnostic region segmentation followed by category matching, which deviates from the human visual system's process of recognizing objects based on semantic concepts, leading to poor alignment between region segmentation and target concepts. To bridge this gap, we propose a novel Cognition-Inspired Framework for open vocabulary image segmentation that emulates the human visual recognition process: first forming a conceptual understanding of an object, then perceiving its spatial extent. The framework consists of three core components: (1) A Generative Vision-Language Model (G-VLM) that mimics human cognition by generating object concepts to provide semantic guidance for region segmentation. (2) A Concept-Aware Visual Enhancer Module that fuses textual concept features with global visual representations, enabling adaptive visual perception based on target concepts. (3) A Cognition-Inspired Decoder that integrates local instance features with G-VLM-provided semantic cues, allowing selective classification over a subset of relevant categories. Extensive experiments demonstrate that our framework achieves significant improvements, reaching 27.2 PQ, 17.0 mAP, and 35.3 mIoU on A-150. It further attains 56.2, 28.2, 15.4, 59.2, 18.7, and 95.8 mIoU on Cityscapes, Mapillary Vistas, A-847, PC-59, PC-459, and PAS-20, respectively. In addition, our framework supports vocabulary-free segmentation, offering enhanced flexibility in recognizing unseen categories. Code will be public.

  • 7 authors
·
May 26

InternLM-XComposer2.5-OmniLive: A Comprehensive Multimodal System for Long-term Streaming Video and Audio Interactions

Creating AI systems that can interact with environments over long periods, similar to human cognition, has been a longstanding research goal. Recent advancements in multimodal large language models (MLLMs) have made significant strides in open-world understanding. However, the challenge of continuous and simultaneous streaming perception, memory, and reasoning remains largely unexplored. Current MLLMs are constrained by their sequence-to-sequence architecture, which limits their ability to process inputs and generate responses simultaneously, akin to being unable to think while perceiving. Furthermore, relying on long contexts to store historical data is impractical for long-term interactions, as retaining all information becomes costly and inefficient. Therefore, rather than relying on a single foundation model to perform all functions, this project draws inspiration from the concept of the Specialized Generalist AI and introduces disentangled streaming perception, reasoning, and memory mechanisms, enabling real-time interaction with streaming video and audio input. The proposed framework InternLM-XComposer2.5-OmniLive (IXC2.5-OL) consists of three key modules: (1) Streaming Perception Module: Processes multimodal information in real-time, storing key details in memory and triggering reasoning in response to user queries. (2) Multi-modal Long Memory Module: Integrates short-term and long-term memory, compressing short-term memories into long-term ones for efficient retrieval and improved accuracy. (3) Reasoning Module: Responds to queries and executes reasoning tasks, coordinating with the perception and memory modules. This project simulates human-like cognition, enabling multimodal large language models to provide continuous and adaptive service over time.

  • 29 authors
·
Dec 12, 2024 3

Embodied Referring Expression Comprehension in Human-Robot Interaction

As robots enter human workspaces, there is a crucial need for them to comprehend embodied human instructions, enabling intuitive and fluent human-robot interaction (HRI). However, accurate comprehension is challenging due to a lack of large-scale datasets that capture natural embodied interactions in diverse HRI settings. Existing datasets suffer from perspective bias, single-view collection, inadequate coverage of nonverbal gestures, and a predominant focus on indoor environments. To address these issues, we present the Refer360 dataset, a large-scale dataset of embodied verbal and nonverbal interactions collected across diverse viewpoints in both indoor and outdoor settings. Additionally, we introduce MuRes, a multimodal guided residual module designed to improve embodied referring expression comprehension. MuRes acts as an information bottleneck, extracting salient modality-specific signals and reinforcing them into pre-trained representations to form complementary features for downstream tasks. We conduct extensive experiments on four HRI datasets, including the Refer360 dataset, and demonstrate that current multimodal models fail to capture embodied interactions comprehensively; however, augmenting them with MuRes consistently improves performance. These findings establish Refer360 as a valuable benchmark and exhibit the potential of guided residual learning to advance embodied referring expression comprehension in robots operating within human environments.

  • 8 authors
·
Dec 6 2

Don't Judge Before You CLIP: A Unified Approach for Perceptual Tasks

Visual perceptual tasks aim to predict human judgment of images (e.g., emotions invoked by images, image quality assessment). Unlike objective tasks such as object/scene recognition, perceptual tasks rely on subjective human assessments, making its data-labeling difficult. The scarcity of such human-annotated data results in small datasets leading to poor generalization. Typically, specialized models were designed for each perceptual task, tailored to its unique characteristics and its own training dataset. We propose a unified architectural framework for solving multiple different perceptual tasks leveraging CLIP as a prior. Our approach is based on recent cognitive findings which indicate that CLIP correlates well with human judgment. While CLIP was explicitly trained to align images and text, it implicitly also learned human inclinations. We attribute this to the inclusion of human-written image captions in CLIP's training data, which contain not only factual image descriptions, but inevitably also human sentiments and emotions. This makes CLIP a particularly strong prior for perceptual tasks. Accordingly, we suggest that minimal adaptation of CLIP suffices for solving a variety of perceptual tasks. Our simple unified framework employs a lightweight adaptation to fine-tune CLIP to each task, without requiring any task-specific architectural changes. We evaluate our approach on three tasks: (i) Image Memorability Prediction, (ii) No-reference Image Quality Assessment, and (iii) Visual Emotion Analysis. Our model achieves state-of-the-art results on all three tasks, while demonstrating improved generalization across different datasets.

  • 5 authors
·
Mar 17

Be My Eyes: Extending Large Language Models to New Modalities Through Multi-Agent Collaboration

Large Language Models (LLMs) have demonstrated remarkable capabilities in challenging, knowledge-intensive reasoning tasks. However, extending LLMs to perceive and reason over a new modality (e.g., vision), often requires costly development of large-scale vision language models (VLMs) with LLMs as backbones. Smaller VLMs are more efficient and adaptable but often lack the broad knowledge and reasoning capabilities of frontier LLMs. In this work, we propose BeMyEyes, a modular, multi-agent framework for extending LLMs to multimodal reasoning by orchestrating collaboration between efficient, adaptable VLMs as perceivers and powerful LLMs as reasoners through conversations. We then introduce a data synthesis and supervised fine-tuning pipeline to train the perceiver agent to effectively collaborate with the reasoner agent. By combining the complementary strengths of perception and reasoning agents, BeMyEyes avoids the need for training large-scale multimodal models, preserves the generalization and reasoning capabilities of LLMs, and allows flexible extension to new domains and modalities. Experiments show that our framework unlocks the multimodal reasoning capabilities for LLMs, enabling a lightweight and fully open-source solution, i.e. equipping text-only DeepSeek-R1 with Qwen2.5-VL-7B perceiver, to outperform large-scale proprietary VLMs such as GPT-4o on a wide range of knowledge-intensive multimodal tasks. These results demonstrate the effectiveness, modularity, and scalability of our multi-agent approach for building future multimodal reasoning systems.

  • 8 authors
·
Nov 24

VisRL: Intention-Driven Visual Perception via Reinforced Reasoning

Visual understanding is inherently intention-driven - humans selectively focus on different regions of a scene based on their goals. Recent advances in large multimodal models (LMMs) enable flexible expression of such intentions through natural language, allowing queries to guide visual reasoning processes. Frameworks like Visual Chain-of-Thought have demonstrated the benefit of incorporating explicit reasoning steps, where the model predicts a focus region before answering a query. However, existing approaches rely heavily on supervised training with annotated intermediate bounding boxes, which severely limits scalability due to the combinatorial explosion of intention-region pairs. To overcome this limitation, we propose VisRL, the first framework that applies reinforcement learning (RL) to the problem of intention-driven visual perception. VisRL optimizes the entire visual reasoning process using only reward signals. By treating intermediate focus selection as an internal decision optimized through trial-and-error, our method eliminates the need for costly region annotations while aligning more closely with how humans learn to perceive the world. Extensive experiments across multiple benchmarks show that VisRL consistently outperforms strong baselines, demonstrating both its effectiveness and its strong generalization across different LMMs. Our code is available at https://github.com/zhangquanchen/VisRL.

  • 3 authors
·
Mar 10

USER-VLM 360: Personalized Vision Language Models with User-aware Tuning for Social Human-Robot Interactions

The integration of vision-language models into robotic systems constitutes a significant advancement in enabling machines to interact with their surroundings in a more intuitive manner. While VLMs offer rich multimodal reasoning, existing approaches lack user-specific adaptability, often relying on generic interaction paradigms that fail to account for individual behavioral, contextual, or socio-emotional nuances. When customization is attempted, ethical concerns arise from unmitigated biases in user data, risking exclusion or unfair treatment. To address these dual challenges, we propose User-VLM 360{\deg}, a holistic framework integrating multimodal user modeling with bias-aware optimization. Our approach features: (1) user-aware tuning that adapts interactions in real time using visual-linguistic signals; (2) bias mitigation via preference optimization; and (3) curated 360{\deg} socio-emotive interaction datasets annotated with demographic, emotion, and relational metadata. Evaluations across eight benchmarks demonstrate state-of-the-art results: +35.3% F1 in personalized VQA, +47.5% F1 in facial features understanding, 15% bias reduction, and 30X speedup over baselines. Ablation studies confirm component efficacy, and deployment on the Pepper robot validates real-time adaptability across diverse users. We open-source parameter-efficient 3B/10B models and an ethical verification framework for responsible adaptation.

  • 6 authors
·
Feb 14

Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact

Can machines truly think, reason and act in domains like humans? This enduring question continues to shape the pursuit of Artificial General Intelligence (AGI). Despite the growing capabilities of models such as GPT-4.5, DeepSeek, Claude 3.5 Sonnet, Phi-4, and Grok 3, which exhibit multimodal fluency and partial reasoning, these systems remain fundamentally limited by their reliance on token-level prediction and lack of grounded agency. This paper offers a cross-disciplinary synthesis of AGI development, spanning artificial intelligence, cognitive neuroscience, psychology, generative models, and agent-based systems. We analyze the architectural and cognitive foundations of general intelligence, highlighting the role of modular reasoning, persistent memory, and multi-agent coordination. In particular, we emphasize the rise of Agentic RAG frameworks that combine retrieval, planning, and dynamic tool use to enable more adaptive behavior. We discuss generalization strategies, including information compression, test-time adaptation, and training-free methods, as critical pathways toward flexible, domain-agnostic intelligence. Vision-Language Models (VLMs) are reexamined not just as perception modules but as evolving interfaces for embodied understanding and collaborative task completion. We also argue that true intelligence arises not from scale alone but from the integration of memory and reasoning: an orchestration of modular, interactive, and self-improving components where compression enables adaptive behavior. Drawing on advances in neurosymbolic systems, reinforcement learning, and cognitive scaffolding, we explore how recent architectures begin to bridge the gap between statistical learning and goal-directed cognition. Finally, we identify key scientific, technical, and ethical challenges on the path to AGI.

MIMIC-IT: Multi-Modal In-Context Instruction Tuning

High-quality instructions and responses are essential for the zero-shot performance of large language models on interactive natural language tasks. For interactive vision-language tasks involving intricate visual scenes, a large quantity of diverse and creative instruction-response pairs should be imperative to tune vision-language models (VLMs). Nevertheless, the current availability of vision-language instruction-response pairs in terms of quantity, diversity, and creativity remains limited, posing challenges to the generalization of interactive VLMs. Here we present MultI-Modal In-Context Instruction Tuning (MIMIC-IT), a dataset comprising 2.8 million multimodal instruction-response pairs, with 2.2 million unique instructions derived from images and videos. Each pair is accompanied by multi-modal in-context information, forming conversational contexts aimed at empowering VLMs in perception, reasoning, and planning. The instruction-response collection process, dubbed as Syphus, is scaled using an automatic annotation pipeline that combines human expertise with GPT's capabilities. Using the MIMIC-IT dataset, we train a large VLM named Otter. Based on extensive evaluations conducted on vision-language benchmarks, it has been observed that Otter demonstrates remarkable proficiency in multi-modal perception, reasoning, and in-context learning. Human evaluation reveals it effectively aligns with the user's intentions. We release the MIMIC-IT dataset, instruction-response collection pipeline, benchmarks, and the Otter model.

  • 8 authors
·
Jun 8, 2023

Latent Compass: Creation by Navigation

In Marius von Senden's Space and Sight, a newly sighted blind patient describes the experience of a corner as lemon-like, because corners "prick" sight like lemons prick the tongue. Prickliness, here, is a dimension in the feature space of sensory experience, an effect of the perceived on the perceiver that arises where the two interact. In the account of the newly sighted, an effect familiar from one interaction translates to a novel context. Perception serves as the vehicle for generalization, in that an effect shared across different experiences produces a concrete abstraction grounded in those experiences. Cezanne and the post-impressionists, fluent in the language of experience translation, realized that the way to paint a concrete form that best reflected reality was to paint not what they saw, but what it was like to see. We envision a future of creation using AI where what it is like to see is replicable, transferrable, manipulable - part of the artist's palette that is both grounded in a particular context, and generalizable beyond it. An active line of research maps human-interpretable features onto directions in GAN latent space. Supervised and self-supervised approaches that search for anticipated directions or use off-the-shelf classifiers to drive image manipulation in embedding space are limited in the variety of features they can uncover. Unsupervised approaches that discover useful new directions show that the space of perceptually meaningful directions is nowhere close to being fully mapped. As this space is broad and full of creative potential, we want tools for direction discovery that capture the richness and generalizability of human perception. Our approach puts creators in the discovery loop during real-time tool use, in order to identify directions that are perceptually meaningful to them, and generate interpretable image translations along those directions.

  • 3 authors
·
Dec 19, 2020

Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs

Vision Language Models (VLMs) demonstrate remarkable proficiency in addressing a wide array of visual questions, which requires strong perception and reasoning faculties. Assessing these two competencies independently is crucial for model refinement, despite the inherent difficulty due to the intertwined nature of seeing and reasoning in existing VLMs. To tackle this issue, we present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving. Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information using a Large Language Model (LLM). This modular design enables the systematic comparison and assessment of both proprietary and open-source VLM for their perception and reasoning strengths. Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks. By combining a streamlined VLM focused on perception with a powerful LLM tailored for reasoning, Prism achieves superior results in general vision-language tasks while substantially cutting down on training and operational expenses. Quantitative evaluations show that Prism, when configured with a vanilla 2B LLaVA and freely accessible GPT-3.5, delivers performance on par with VLMs 10 times larger on the rigorous multimodal benchmark MMStar. The project is released at: https://github.com/SparksJoe/Prism.

  • 9 authors
·
Jun 20, 2024 2

Multi-level Matching Network for Multimodal Entity Linking

Multimodal entity linking (MEL) aims to link ambiguous mentions within multimodal contexts to corresponding entities in a multimodal knowledge base. Most existing approaches to MEL are based on representation learning or vision-and-language pre-training mechanisms for exploring the complementary effect among multiple modalities. However, these methods suffer from two limitations. On the one hand, they overlook the possibility of considering negative samples from the same modality. On the other hand, they lack mechanisms to capture bidirectional cross-modal interaction. To address these issues, we propose a Multi-level Matching network for Multimodal Entity Linking (M3EL). Specifically, M3EL is composed of three different modules: (i) a Multimodal Feature Extraction module, which extracts modality-specific representations with a multimodal encoder and introduces an intra-modal contrastive learning sub-module to obtain better discriminative embeddings based on uni-modal differences; (ii) an Intra-modal Matching Network module, which contains two levels of matching granularity: Coarse-grained Global-to-Global and Fine-grained Global-to-Local, to achieve local and global level intra-modal interaction; (iii) a Cross-modal Matching Network module, which applies bidirectional strategies, Textual-to-Visual and Visual-to-Textual matching, to implement bidirectional cross-modal interaction. Extensive experiments conducted on WikiMEL, RichpediaMEL, and WikiDiverse datasets demonstrate the outstanding performance of M3EL when compared to the state-of-the-art baselines.

  • 4 authors
·
Dec 11, 2024

Selective Visual Representations Improve Convergence and Generalization for Embodied AI

Embodied AI models often employ off the shelf vision backbones like CLIP to encode their visual observations. Although such general purpose representations encode rich syntactic and semantic information about the scene, much of this information is often irrelevant to the specific task at hand. This introduces noise within the learning process and distracts the agent's focus from task-relevant visual cues. Inspired by selective attention in humans-the process through which people filter their perception based on their experiences, knowledge, and the task at hand-we introduce a parameter-efficient approach to filter visual stimuli for embodied AI. Our approach induces a task-conditioned bottleneck using a small learnable codebook module. This codebook is trained jointly to optimize task reward and acts as a task-conditioned selective filter over the visual observation. Our experiments showcase state-of-the-art performance for object goal navigation and object displacement across 5 benchmarks, ProcTHOR, ArchitecTHOR, RoboTHOR, AI2-iTHOR, and ManipulaTHOR. The filtered representations produced by the codebook are also able generalize better and converge faster when adapted to other simulation environments such as Habitat. Our qualitative analyses show that agents explore their environments more effectively and their representations retain task-relevant information like target object recognition while ignoring superfluous information about other objects. Code and pretrained models are available at our project website: https://embodied-codebook.github.io.

  • 6 authors
·
Nov 7, 2023

RecoWorld: Building Simulated Environments for Agentic Recommender Systems

We present RecoWorld, a blueprint for building simulated environments tailored to agentic recommender systems. Such environments give agents a proper training space where they can learn from errors without impacting real users. RecoWorld distinguishes itself with a dual-view architecture: a simulated user and an agentic recommender engage in multi-turn interactions aimed at maximizing user retention. The user simulator reviews recommended items, updates its mindset, and when sensing potential user disengagement, generates reflective instructions. The agentic recommender adapts its recommendations by incorporating these user instructions and reasoning traces, creating a dynamic feedback loop that actively engages users. This process leverages the exceptional reasoning capabilities of modern LLMs. We explore diverse content representations within the simulator, including text-based, multimodal, and semantic ID modeling, and discuss how multi-turn RL enables the recommender to refine its strategies through iterative interactions. RecoWorld also supports multi-agent simulations, allowing creators to simulate the responses of targeted user populations. It marks an important first step toward recommender systems where users and agents collaboratively shape personalized information streams. We envision new interaction paradigms where "user instructs, recommender responds," jointly optimizing user retention and engagement.

  • 15 authors
·
Sep 12 2

One Model, Multiple Modalities: A Sparsely Activated Approach for Text, Sound, Image, Video and Code

People perceive the world with multiple senses (e.g., through hearing sounds, reading words and seeing objects). However, most existing AI systems only process an individual modality. This paper presents an approach that excels at handling multiple modalities of information with a single model. In our "{SkillNet}" model, different parts of the parameters are specialized for processing different modalities. Unlike traditional dense models that always activate all the model parameters, our model sparsely activates parts of the parameters whose skills are relevant to the task. Such model design enables SkillNet to learn skills in a more interpretable way. We develop our model for five modalities including text, image, sound, video and code. Results show that, SkillNet performs comparably to five modality-specific fine-tuned models. Moreover, our model supports self-supervised pretraining with the same sparsely activated way, resulting in better initialized parameters for different modalities. We find that pretraining significantly improves the performance of SkillNet on five modalities, on par with or even better than baselines with modality-specific pretraining. On the task of Chinese text-to-image retrieval, our final system achieves higher accuracy than existing leading systems including Wukong{ViT-B} and Wenlan 2.0 while using less number of activated parameters.

  • 10 authors
·
May 12, 2022

LSceneLLM: Enhancing Large 3D Scene Understanding Using Adaptive Visual Preferences

Research on 3D Vision-Language Models (3D-VLMs) is gaining increasing attention, which is crucial for developing embodied AI within 3D scenes, such as visual navigation and embodied question answering. Due to the high density of visual features, especially in large 3D scenes, accurately locating task-relevant visual information is challenging. Existing works attempt to segment all objects and consider their features as scene representations. However, these task-agnostic object features include much redundant information and missing details for the task-relevant area. To tackle these problems, we propose LSceneLLM, an adaptive framework that automatically identifies task-relevant areas by leveraging LLM's visual preference for different tasks, followed by a plug-and-play scene magnifier module to capture fine-grained details in focused areas. Specifically, a dense token selector examines the attention map of LLM to identify visual preferences for the instruction input. It then magnifies fine-grained details of the focusing area. An adaptive self-attention module is leveraged to fuse the coarse-grained and selected fine-grained visual information. To comprehensively evaluate the large scene understanding ability of 3D-VLMs, we further introduce a cross-room understanding benchmark, XR-Scene, which contains a series of large scene understanding tasks including XR-QA, XR-EmbodiedPlanning, and XR-SceneCaption. Experiments show that our method surpasses existing methods on both large scene understanding and existing scene understanding benchmarks. Plunging our scene magnifier module into the existing 3D-VLMs also brings significant improvement.

  • 9 authors
·
Dec 2, 2024 2

LMEye: An Interactive Perception Network for Large Language Models

Training a Large Visual Language Model (LVLM) from scratch, like GPT-4, is resource-intensive. Our paper presents a play-and-plug module for Large Language Models (LLMs), namely Interactive Perception Network (IPN), aiming to achieve a LVLM by incorporating the image understanding capability into LLMs. Previous methods incorporate visual information into LLMs with a simple visual mapping network, where the image feature is projected into the embedding space of LLMs via a linear layer. Such mapping network projects the image feature once yet does not consider the interaction between the image and the human input query. Hence, the obtained visual information with no connections with human intention may be inadequate for LLMs to make intention-following responses, which we term as static visual information. IPN addresses this issue by allowing the LLM to request the desired visual information aligned with various human instructions, which we term as the dynamic interaction between the LLM and visual information. Specifically, IPN consists of a simple visual mapping network to provide the basic perception of an image for LLMs. It also contains additional modules responsible for acquiring requests from LLMs, performing request-based visual information interaction, and transmitting the resulting interacted visual information to LLMs, respectively. In this way, LLMs act to understand the human query, deliver the corresponding request to the request-based visual information interaction module, and generate the response based on the interleaved multimodal information. We evaluate IPN through extensive experiments on multimodal question answering, reasoning, and so on, demonstrating that it significantly improves the zero-shot performance of LVLMs on various multimodal tasks compared to previous methods.

  • 5 authors
·
May 5, 2023

Creating General User Models from Computer Use

Human-computer interaction has long imagined technology that understands us-from our preferences and habits, to the timing and purpose of our everyday actions. Yet current user models remain fragmented, narrowly tailored to specific apps, and incapable of the flexible reasoning required to fulfill these visions. This paper presents an architecture for a general user model (GUM) that learns about you by observing any interaction you have with your computer. The GUM takes as input any unstructured observation of a user (e.g., device screenshots) and constructs confidence-weighted propositions that capture that user knowledge and preferences. GUMs can infer that a user is preparing for a wedding they're attending from messages with a friend. Or recognize that a user is struggling with a collaborator's feedback on a draft by observing multiple stalled edits and a switch to reading related work. GUMs introduce an architecture that infers new propositions about a user from multimodal observations, retrieves related propositions for context, and continuously revises existing propositions. To illustrate the breadth of applications that GUMs enable, we demonstrate how they augment chat-based assistants with context, manage OS notifications to selectively surface important information, and enable interactive agents that adapt to preferences across apps. We also instantiate proactive assistants (GUMBOs) that discover and execute useful suggestions on a user's behalf using their GUM. In our evaluations, we find that GUMs make calibrated and accurate inferences about users, and that assistants built on GUMs proactively identify and perform actions that users wouldn't think to request explicitly. Altogether, GUMs introduce methods that leverage multimodal models to understand unstructured context, enabling long-standing visions of HCI and entirely new interactive systems that anticipate user needs.

  • 7 authors
·
May 16 2

Draw-In-Mind: Learning Precise Image Editing via Chain-of-Thought Imagination

In recent years, integrating multimodal understanding and generation into a single unified model has emerged as a promising paradigm. While this approach achieves strong results in text-to-image (T2I) generation, it still struggles with precise image editing. We attribute this limitation to an imbalanced division of responsibilities. The understanding module primarily functions as a translator that encodes user instructions into semantic conditions, while the generation module must simultaneously act as designer and painter, inferring the original layout, identifying the target editing region, and rendering the new content. This imbalance is counterintuitive because the understanding module is typically trained with several times more data on complex reasoning tasks than the generation module. To address this issue, we introduce Draw-In-Mind (DIM), a dataset comprising two complementary subsets: (i) DIM-T2I, containing 14M long-context image-text pairs to enhance complex instruction comprehension; and (ii) DIM-Edit, consisting of 233K chain-of-thought imaginations generated by GPT-4o, serving as explicit design blueprints for image edits. We connect a frozen Qwen2.5-VL-3B with a trainable SANA1.5-1.6B via a lightweight two-layer MLP, and train it on the proposed DIM dataset, resulting in DIM-4.6B-T2I/Edit. Despite its modest parameter scale, DIM-4.6B-Edit achieves SOTA or competitive performance on the ImgEdit and GEdit-Bench benchmarks, outperforming much larger models such as UniWorld-V1 and Step1X-Edit. These findings demonstrate that explicitly assigning the design responsibility to the understanding module provides significant benefits for image editing. Our dataset and models will be available at https://github.com/showlab/DIM.

showlab Show Lab
·
Sep 2

MMPerspective: Do MLLMs Understand Perspective? A Comprehensive Benchmark for Perspective Perception, Reasoning, and Robustness

Understanding perspective is fundamental to human visual perception, yet the extent to which multimodal large language models (MLLMs) internalize perspective geometry remains unclear. We introduce MMPerspective, the first benchmark specifically designed to systematically evaluate MLLMs' understanding of perspective through 10 carefully crafted tasks across three complementary dimensions: Perspective Perception, Reasoning, and Robustness. Our benchmark comprises 2,711 real-world and synthetic image instances with 5,083 question-answer pairs that probe key capabilities, such as vanishing point perception and counting, perspective type reasoning, line relationship understanding in 3D space, invariance to perspective-preserving transformations, etc. Through a comprehensive evaluation of 43 state-of-the-art MLLMs, we uncover significant limitations: while models demonstrate competence on surface-level perceptual tasks, they struggle with compositional reasoning and maintaining spatial consistency under perturbations. Our analysis further reveals intriguing patterns between model architecture, scale, and perspective capabilities, highlighting both robustness bottlenecks and the benefits of chain-of-thought prompting. MMPerspective establishes a valuable testbed for diagnosing and advancing spatial understanding in vision-language systems. Resources available at: https://yunlong10.github.io/MMPerspective/

ChatRex: Taming Multimodal LLM for Joint Perception and Understanding

Perception and understanding are two pillars of computer vision. While multimodal large language models (MLLM) have demonstrated remarkable visual understanding capabilities, they arguably lack accurate perception abilities, e.g. the stage-of-the-art model Qwen2-VL only achieves a 43.9 recall rate on the COCO dataset, limiting many tasks requiring the combination of perception and understanding. In this work, we aim to bridge this perception gap from both model designing and data development perspectives. We first introduce ChatRex, an MLLM with a decoupled perception design. Instead of having the LLM directly predict box coordinates, we feed the output boxes from a universal proposal network into the LLM, allowing it to output the corresponding box indices to represent its detection results, turning the regression task into a retrieval-based task that LLM handles more proficiently. From the data perspective, we build a fully automated data engine and construct the Rexverse-2M dataset which possesses multiple granularities to support the joint training of perception and understanding. After standard two-stage training, ChatRex demonstrates strong perception capabilities while preserving multimodal understanding performance. The combination of these two capabilities simultaneously unlocks many attractive applications, demonstrating the complementary roles of both perception and understanding in MLLM. Code is available at https://github.com/IDEA-Research/ChatRex.

  • 8 authors
·
Nov 27, 2024 3

HumanSense: From Multimodal Perception to Empathetic Context-Aware Responses through Reasoning MLLMs

While Multimodal Large Language Models (MLLMs) show immense promise for achieving truly human-like interactions, progress is hindered by the lack of fine-grained evaluation frameworks for human-centered scenarios, encompassing both the understanding of complex human intentions and the provision of empathetic, context-aware responses. Here we introduce HumanSense, a comprehensive benchmark designed to evaluate the human-centered perception and interaction capabilities of MLLMs, with a particular focus on deep understanding of extended multimodal contexts and the formulation of rational feedback. Our evaluation reveals that leading MLLMs still have considerable room for improvement, particularly for advanced interaction-oriented tasks. Supplementing visual input with audio and text information yields substantial improvements, and Omni-modal models show advantages on these tasks. Furthermore, we argue that appropriate feedback stems from a contextual analysis of the interlocutor's needs and emotions, with reasoning ability serving as the key to unlocking it. Accordingly, we employ a multi-stage, modality-progressive reinforcement learning to enhance the reasoning abilities of an Omni model, achieving substantial gains on evaluation results. Additionally, we observe that successful reasoning processes exhibit highly consistent thought patterns. By designing corresponding prompts, we also enhance the performance of non-reasoning models in a training-free manner. Project page: brightpinkhttps://digital-avatar.github.io/ai/HumanSense/

  • 7 authors
·
Aug 14 2

Foundational Models Defining a New Era in Vision: A Survey and Outlook

Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world. The complex relations between objects and their locations, ambiguities, and variations in the real-world environment can be better described in human language, naturally governed by grammatical rules and other modalities such as audio and depth. The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time. These models are referred to as foundational models. The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions. In this survey, we provide a comprehensive review of such emerging foundational models, including typical architecture designs to combine different modalities (vision, text, audio, etc), training objectives (contrastive, generative), pre-training datasets, fine-tuning mechanisms, and the common prompting patterns; textual, visual, and heterogeneous. We discuss the open challenges and research directions for foundational models in computer vision, including difficulties in their evaluations and benchmarking, gaps in their real-world understanding, limitations of their contextual understanding, biases, vulnerability to adversarial attacks, and interpretability issues. We review recent developments in this field, covering a wide range of applications of foundation models systematically and comprehensively. A comprehensive list of foundational models studied in this work is available at https://github.com/awaisrauf/Awesome-CV-Foundational-Models.

  • 8 authors
·
Jul 25, 2023

AGLA: Mitigating Object Hallucinations in Large Vision-Language Models with Assembly of Global and Local Attention

Despite their great success across various multimodal tasks, Large Vision-Language Models (LVLMs) are facing a prevalent problem with object hallucinations, where the generated textual responses are inconsistent with ground-truth objects in the given image. This paper investigates various LVLMs and pinpoints attention deficiency toward discriminative local image features as one root cause of object hallucinations. Specifically, LVLMs predominantly attend to prompt-independent global image features, while failing to capture prompt-relevant local features, consequently undermining the visual grounding capacity of LVLMs and leading to hallucinations. To this end, we propose Assembly of Global and Local Attention (AGLA), a training-free and plug-and-play approach that mitigates object hallucinations by exploring an ensemble of global features for response generation and local features for visual discrimination simultaneously. Our approach exhibits an image-prompt matching scheme that captures prompt-relevant local features from images, leading to an augmented view of the input image where prompt-relevant content is reserved while irrelevant distractions are masked. With the augmented view, a calibrated decoding distribution can be derived by integrating generative global features from the original image and discriminative local features from the augmented image. Extensive experiments show that AGLA consistently mitigates object hallucinations and enhances general perception capability for LVLMs across various discriminative and generative benchmarks. Our code will be released at https://github.com/Lackel/AGLA.

  • 9 authors
·
Jun 18, 2024

Visual Classification via Description from Large Language Models

Vision-language models (VLMs) such as CLIP have shown promising performance on a variety of recognition tasks using the standard zero-shot classification procedure -- computing similarity between the query image and the embedded words for each category. By only using the category name, they neglect to make use of the rich context of additional information that language affords. The procedure gives no intermediate understanding of why a category is chosen, and furthermore provides no mechanism for adjusting the criteria used towards this decision. We present an alternative framework for classification with VLMs, which we call classification by description. We ask VLMs to check for descriptive features rather than broad categories: to find a tiger, look for its stripes; its claws; and more. By basing decisions on these descriptors, we can provide additional cues that encourage using the features we want to be used. In the process, we can get a clear idea of what features the model uses to construct its decision; it gains some level of inherent explainability. We query large language models (e.g., GPT-3) for these descriptors to obtain them in a scalable way. Extensive experiments show our framework has numerous advantages past interpretability. We show improvements in accuracy on ImageNet across distribution shifts; demonstrate the ability to adapt VLMs to recognize concepts unseen during training; and illustrate how descriptors can be edited to effectively mitigate bias compared to the baseline.

  • 2 authors
·
Oct 13, 2022

UniAP: Towards Universal Animal Perception in Vision via Few-shot Learning

Animal visual perception is an important technique for automatically monitoring animal health, understanding animal behaviors, and assisting animal-related research. However, it is challenging to design a deep learning-based perception model that can freely adapt to different animals across various perception tasks, due to the varying poses of a large diversity of animals, lacking data on rare species, and the semantic inconsistency of different tasks. We introduce UniAP, a novel Universal Animal Perception model that leverages few-shot learning to enable cross-species perception among various visual tasks. Our proposed model takes support images and labels as prompt guidance for a query image. Images and labels are processed through a Transformer-based encoder and a lightweight label encoder, respectively. Then a matching module is designed for aggregating information between prompt guidance and the query image, followed by a multi-head label decoder to generate outputs for various tasks. By capitalizing on the shared visual characteristics among different animals and tasks, UniAP enables the transfer of knowledge from well-studied species to those with limited labeled data or even unseen species. We demonstrate the effectiveness of UniAP through comprehensive experiments in pose estimation, segmentation, and classification tasks on diverse animal species, showcasing its ability to generalize and adapt to new classes with minimal labeled examples.

  • 8 authors
·
Aug 19, 2023

Modality Alignment with Multi-scale Bilateral Attention for Multimodal Recommendation

Multimodal recommendation systems are increasingly becoming foundational technologies for e-commerce and content platforms, enabling personalized services by jointly modeling users' historical behaviors and the multimodal features of items (e.g., visual and textual). However, most existing methods rely on either static fusion strategies or graph-based local interaction modeling, facing two critical limitations: (1) insufficient ability to model fine-grained cross-modal associations, leading to suboptimal fusion quality; and (2) a lack of global distribution-level consistency, causing representational bias. To address these, we propose MambaRec, a novel framework that integrates local feature alignment and global distribution regularization via attention-guided learning. At its core, we introduce the Dilated Refinement Attention Module (DREAM), which uses multi-scale dilated convolutions with channel-wise and spatial attention to align fine-grained semantic patterns between visual and textual modalities. This module captures hierarchical relationships and context-aware associations, improving cross-modal semantic modeling. Additionally, we apply Maximum Mean Discrepancy (MMD) and contrastive loss functions to constrain global modality alignment, enhancing semantic consistency. This dual regularization reduces mode-specific deviations and boosts robustness. To improve scalability, MambaRec employs a dimensionality reduction strategy to lower the computational cost of high-dimensional multimodal features. Extensive experiments on real-world e-commerce datasets show that MambaRec outperforms existing methods in fusion quality, generalization, and efficiency. Our code has been made publicly available at https://github.com/rkl71/MambaRec.

  • 3 authors
·
Sep 10 2

On the Complexity of Bayesian Generalization

We consider concept generalization at a large scale in the diverse and natural visual spectrum. Established computational modes (i.e., rule-based or similarity-based) are primarily studied isolated and focus on confined and abstract problem spaces. In this work, we study these two modes when the problem space scales up, and the complexity of concepts becomes diverse. Specifically, at the representational level, we seek to answer how the complexity varies when a visual concept is mapped to the representation space. Prior psychology literature has shown that two types of complexities (i.e., subjective complexity and visual complexity) (Griffiths and Tenenbaum, 2003) build an inverted-U relation (Donderi, 2006; Sun and Firestone, 2021). Leveraging Representativeness of Attribute (RoA), we computationally confirm the following observation: Models use attributes with high RoA to describe visual concepts, and the description length falls in an inverted-U relation with the increment in visual complexity. At the computational level, we aim to answer how the complexity of representation affects the shift between the rule- and similarity-based generalization. We hypothesize that category-conditioned visual modeling estimates the co-occurrence frequency between visual and categorical attributes, thus potentially serving as the prior for the natural visual world. Experimental results show that representations with relatively high subjective complexity outperform those with relatively low subjective complexity in the rule-based generalization, while the trend is the opposite in the similarity-based generalization.

  • 9 authors
·
Nov 20, 2022

VDGD: Mitigating LVLM Hallucinations in Cognitive Prompts by Bridging the Visual Perception Gap

Recent interest in Large Vision-Language Models (LVLMs) for practical applications is moderated by the significant challenge of hallucination or the inconsistency between the factual information and the generated text. In this paper, we first perform an in-depth analysis of hallucinations and discover several novel insights about how and when LVLMs hallucinate. From our analysis, we show that: (1) The community's efforts have been primarily targeted towards reducing hallucinations related to visual recognition (VR) prompts (e.g., prompts that only require describing the image), thereby ignoring hallucinations for cognitive prompts (e.g., prompts that require additional skills like reasoning on contents of the image). (2) LVLMs lack visual perception, i.e., they can see but not necessarily understand or perceive the input image. We analyze responses to cognitive prompts and show that LVLMs hallucinate due to a perception gap: although LVLMs accurately recognize visual elements in the input image and possess sufficient cognitive skills, they struggle to respond accurately and hallucinate. To overcome this shortcoming, we propose Visual Description Grounded Decoding (VDGD), a simple, robust, and training-free method for alleviating hallucinations. Specifically, we first describe the image and add it as a prefix to the instruction. Next, during auto-regressive decoding, we sample from the plausible candidates according to their KL-Divergence (KLD) to the description, where lower KLD is given higher preference. Experimental results on several benchmarks and LVLMs show that VDGD improves significantly over other baselines in reducing hallucinations. We also propose VaLLu, a benchmark for the comprehensive evaluation of the cognitive capabilities of LVLMs.

  • 7 authors
·
May 24, 2024

Towards Unified Benchmark and Models for Multi-Modal Perceptual Metrics

Human perception of similarity across uni- and multimodal inputs is highly complex, making it challenging to develop automated metrics that accurately mimic it. General purpose vision-language models, such as CLIP and large multi-modal models (LMMs), can be applied as zero-shot perceptual metrics, and several recent works have developed models specialized in narrow perceptual tasks. However, the extent to which existing perceptual metrics align with human perception remains unclear. To investigate this question, we introduce UniSim-Bench, a benchmark encompassing 7 multi-modal perceptual similarity tasks, with a total of 25 datasets. Our evaluation reveals that while general-purpose models perform reasonably well on average, they often lag behind specialized models on individual tasks. Conversely, metrics fine-tuned for specific tasks fail to generalize well to unseen, though related, tasks. As a first step towards a unified multi-task perceptual similarity metric, we fine-tune both encoder-based and generative vision-language models on a subset of the UniSim-Bench tasks. This approach yields the highest average performance, and in some cases, even surpasses taskspecific models. Nevertheless, these models still struggle with generalization to unseen tasks, highlighting the ongoing challenge of learning a robust, unified perceptual similarity metric capable of capturing the human notion of similarity. The code and models are available at https://github.com/SaraGhazanfari/UniSim.

  • 6 authors
·
Dec 13, 2024

MMCOMPOSITION: Revisiting the Compositionality of Pre-trained Vision-Language Models

The advent of large Vision-Language Models (VLMs) has significantly advanced multimodal understanding, enabling more sophisticated and accurate integration of visual and textual information across various tasks, including image and video captioning, visual question answering, and cross-modal retrieval. Despite VLMs' superior capabilities, researchers lack a comprehensive understanding of their compositionality -- the ability to understand and produce novel combinations of known visual and textual components. Prior benchmarks provide only a relatively rough compositionality evaluation from the perspectives of objects, relations, and attributes while neglecting deeper reasoning about object interactions, counting, and complex compositions. However, compositionality is a critical ability that facilitates coherent reasoning and understanding across modalities for VLMs. To address this limitation, we propose MMCOMPOSITION, a novel human-annotated benchmark for comprehensively and accurately evaluating VLMs' compositionality. Our proposed benchmark serves as a complement to these earlier works. With MMCOMPOSITION, we can quantify and explore the compositionality of the mainstream VLMs. Surprisingly, we find GPT-4o's compositionality inferior to the best open-source model, and we analyze the underlying reasons. Our experimental analysis reveals the limitations of VLMs in fine-grained compositional perception and reasoning, and points to areas for improvement in VLM design and training. Resources available at: https://hanghuacs.github.io/MMComposition/

  • 8 authors
·
Oct 13, 2024 2

MMRA: A Benchmark for Multi-granularity Multi-image Relational Association

Given the remarkable success that large visual language models (LVLMs) have achieved in image perception tasks, the endeavor to make LVMLs perceive the world like humans is drawing increasing attention. Current multi-modal benchmarks mainly focus on the objective fact or certain topic related potential knowledge within a image, but overlook the associative relations between multiple images. Therefore, we define a multi-image relation association task, and meticulously curate MMRA benchmark, a Multi-granularity Multi-image Relational Association benchmark, consisted of 1026 samples. In order to systematically and comprehensively evaluate mainstream LVLMs, we establish an associational relation system among images that contain 11 subtasks (e.g, UsageSimilarity, SubEvent, etc.) at two granularity levels (i.e., "image" and "entity") according to the relations in ConceptNet. Our experiments demonstrate that, on our MMRA benchmark, current mainstream LVLMs all have their own advantages and disadvantages across different subtasks. It is worth noting that, at the entity level, the performance of all models is worse than that of them at the image level, indicating that the fine-grained multi-image perception task is still challenging for LVLMs. The tasks related to spatial perception are relatively difficult for LVLMs to handle. Furthermore, we find that LVMLs exhibit a good ability to perceive image details, and the key to enhancing their multi-image association capability is to strengthen the reasoning ability of their language model component. All our codes and data are released at htthttps://github.com/Wusiwei0410/MMRA.

  • 13 authors
·
Jul 24, 2024

UFO: A Unified Approach to Fine-grained Visual Perception via Open-ended Language Interface

Generalist models have achieved remarkable success in both language and vision-language tasks, showcasing the potential of unified modeling. However, effectively integrating fine-grained perception tasks like detection and segmentation into these models remains a significant challenge. This is primarily because these tasks often rely heavily on task-specific designs and architectures that can complicate the modeling process. To address this challenge, we present \ours, a framework that Unifies Fine-grained visual perception tasks through an Open-ended language interface. By transforming all perception targets into the language space, \ours unifies object-level detection, pixel-level segmentation, and image-level vision-language tasks into a single model. Additionally, we introduce a novel embedding retrieval approach that relies solely on the language interface to support segmentation tasks. Our framework bridges the gap between fine-grained perception and vision-language tasks, significantly simplifying architectural design and training strategies while achieving comparable or superior performance to methods with intricate task-specific designs. After multi-task training on five standard visual perception datasets, \ours outperforms the previous state-of-the-art generalist models by 12.3 mAP on COCO instance segmentation and 3.3 mIoU on ADE20K semantic segmentation. Furthermore, our method seamlessly integrates with existing MLLMs, effectively combining fine-grained perception capabilities with their advanced language abilities, thereby enabling more challenging tasks such as reasoning segmentation. Code and models will be publicly available.

  • 8 authors
·
Mar 3 2

VisOnlyQA: Large Vision Language Models Still Struggle with Visual Perception of Geometric Information

Errors in understanding visual information in images (i.e., visual perception errors) remain a major source of mistakes in Large Vision Language Models (LVLMs). While further analysis is essential, there is a deficiency in datasets for evaluating the visual perception of LVLMs. In this work, we introduce VisOnlyQA, a new dataset designed to directly evaluate the visual perception capabilities of LVLMs on questions about geometric and numerical information in scientific figures. Our dataset enables us to analyze the visual perception of LVLMs for fine-grained visual information, independent of other capabilities such as reasoning. The evaluation set of VisOnlyQA includes 1,200 multiple-choice questions in 12 tasks on four categories of figures. We also provide synthetic training data consisting of 70k instances. Our experiments on VisOnlyQA highlight the following findings: (i) 20 LVLMs we evaluate, including GPT-4o and Gemini 1.5 Pro, work poorly on the visual perception tasks in VisOnlyQA, while human performance is nearly perfect. (ii) Fine-tuning on synthetic training data demonstrates the potential for enhancing the visual perception of LVLMs, but observed improvements are limited to certain tasks and specific models. (iii) Stronger language models improve the visual perception of LVLMs. In summary, our experiments suggest that both training data and model architectures should be improved to enhance the visual perception capabilities of LVLMs. The datasets, code, and model responses are provided at https://github.com/psunlpgroup/VisOnlyQA.

  • 5 authors
·
Dec 1, 2024 2

Learning to Chain Operations by Routing Information Through a Global Workspace

We present a model inspired by the Global Workspace Theory that integrates specialized modules to perform a sequential reasoning task. A controller selectively routes information between modules through the workspace using a gating mechanism. This approach allows the model to chain operations by iteratively broadcasting information between specialized domains, mimicking System-2 reasoning. We evaluate the model's performance on a simple addition task, where two addends must be summed. The task can be solved by routing information sequentially through an Input module, an Increment module (multiple times), and finally an Output module. We consider two implementations of this system with increasing complexity. First, using hand-designed modules operating on one-hot digit representations, the controller (a LSTM recurrent network) learns to select the appropriate modules (input, increment, output) in the appropriate sequence. Second, we replace the hand-designed modules with learned representation modules for MNIST images and an increment module trained on the task objectives; here again, the controller learns the appropriate sequential module selection to solve the task. Finally, we show that the Global Workspace model, while having fewer parameters, outperforms LSTMs and Transformers when tested on unseen addition operations (both interpolations and extrapolations of addition operations seen during training). Our results highlight the potential of architectures inspired by the Global Workspace Theory to enhance deep learning's reasoning capabilities.

  • 2 authors
·
Feb 28

Mitigating Object Hallucinations via Sentence-Level Early Intervention

Multimodal large language models (MLLMs) have revolutionized cross-modal understanding but continue to struggle with hallucinations - fabricated content contradicting visual inputs. Existing hallucination mitigation methods either incur prohibitive computational costs or introduce distribution mismatches between training data and model outputs. We identify a critical insight: hallucinations predominantly emerge at the early stages of text generation and propagate through subsequent outputs. To address this, we propose **SENTINEL** (**S**entence-level **E**arly i**N**tervention **T**hrough **IN**-domain pr**E**ference **L**earning), a framework that eliminates dependency on human annotations. Specifically, we first bootstrap high-quality in-domain preference pairs by iteratively sampling model outputs, validating object existence through cross-checking with two open-vocabulary detectors, and classifying sentences into hallucinated/non-hallucinated categories. Subsequently, we use context-coherent positive samples and hallucinated negative samples to build context-aware preference data iteratively. Finally, we train models using a context-aware preference loss (C-DPO) that emphasizes discriminative learning at the sentence level where hallucinations initially manifest. Experimental results show that SENTINEL can reduce hallucinations by over 90\% compared to the original model and outperforms the previous state-of-the-art method on both hallucination benchmarks and general capabilities benchmarks, demonstrating its superiority and generalization ability. The models, datasets, and code are available at https://github.com/pspdada/SENTINEL.

  • 4 authors
·
Jul 16 2