- Attentive Task Interaction Network for Multi-Task Learning Multitask learning (MTL) has recently gained a lot of popularity as a learning paradigm that can lead to improved per-task performance while also using fewer per-task model parameters compared to single task learning. One of the biggest challenges regarding MTL networks involves how to share features across tasks. To address this challenge, we propose the Attentive Task Interaction Network (ATI-Net). ATI-Net employs knowledge distillation of the latent features for each task, then combines the feature maps to provide improved contextualized information to the decoder. This novel approach to introducing knowledge distillation into an attention based multitask network outperforms state of the art MTL baselines such as the standalone MTAN and PAD-Net, with roughly the same number of model parameters. 2 authors · Jan 25, 2022
- EyePAD++: A Distillation-based approach for joint Eye Authentication and Presentation Attack Detection using Periocular Images A practical eye authentication (EA) system targeted for edge devices needs to perform authentication and be robust to presentation attacks, all while remaining compute and latency efficient. However, existing eye-based frameworks a) perform authentication and Presentation Attack Detection (PAD) independently and b) involve significant pre-processing steps to extract the iris region. Here, we introduce a joint framework for EA and PAD using periocular images. While a deep Multitask Learning (MTL) network can perform both the tasks, MTL suffers from the forgetting effect since the training datasets for EA and PAD are disjoint. To overcome this, we propose Eye Authentication with PAD (EyePAD), a distillation-based method that trains a single network for EA and PAD while reducing the effect of forgetting. To further improve the EA performance, we introduce a novel approach called EyePAD++ that includes training an MTL network on both EA and PAD data, while distilling the `versatility' of the EyePAD network through an additional distillation step. Our proposed methods outperform the SOTA in PAD and obtain near-SOTA performance in eye-to-eye verification, without any pre-processing. We also demonstrate the efficacy of EyePAD and EyePAD++ in user-to-user verification with PAD across network backbones and image quality. 6 authors · Dec 21, 2021
- D-PAD: Deep-Shallow Multi-Frequency Patterns Disentangling for Time Series Forecasting In time series forecasting, effectively disentangling intricate temporal patterns is crucial. While recent works endeavor to combine decomposition techniques with deep learning, multiple frequencies may still be mixed in the decomposed components, e.g., trend and seasonal. Furthermore, frequency domain analysis methods, e.g., Fourier and wavelet transforms, have limitations in resolution in the time domain and adaptability. In this paper, we propose D-PAD, a deep-shallow multi-frequency patterns disentangling neural network for time series forecasting. Specifically, a multi-component decomposing (MCD) block is introduced to decompose the series into components with different frequency ranges, corresponding to the "shallow" aspect. A decomposition-reconstruction-decomposition (D-R-D) module is proposed to progressively extract the information of frequencies mixed in the components, corresponding to the "deep" aspect. After that, an interaction and fusion (IF) module is used to further analyze the components. Extensive experiments on seven real-world datasets demonstrate that D-PAD achieves the state-of-the-art performance, outperforming the best baseline by an average of 9.48% and 7.15% in MSE and MAE, respectively. 2 authors · Mar 26, 2024
- Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks The performance of deep network learning strongly depends on the choice of the non-linear activation function associated with each neuron. However, deciding on the best activation is non-trivial, and the choice depends on the architecture, hyper-parameters, and even on the dataset. Typically these activations are fixed by hand before training. Here, we demonstrate how to eliminate the reliance on first picking fixed activation functions by using flexible parametric rational functions instead. The resulting Pad\'e Activation Units (PAUs) can both approximate common activation functions and also learn new ones while providing compact representations. Our empirical evidence shows that end-to-end learning deep networks with PAUs can increase the predictive performance. Moreover, PAUs pave the way to approximations with provable robustness. https://github.com/ml-research/pau 3 authors · Jul 15, 2019