- MLIP Arena: Advancing Fairness and Transparency in Machine Learning Interatomic Potentials via an Open, Accessible Benchmark Platform Machine learning interatomic potentials (MLIPs) have revolutionized molecular and materials modeling, but existing benchmarks suffer from data leakage, limited transferability, and an over-reliance on error-based metrics tied to specific density functional theory (DFT) references. We introduce MLIP Arena, a benchmark platform that evaluates force field performance based on physics awareness, chemical reactivity, stability under extreme conditions, and predictive capabilities for thermodynamic properties and physical phenomena. By moving beyond static DFT references and revealing the important failure modes of current foundation MLIPs in real-world settings, MLIP Arena provides a reproducible framework to guide the next-generation MLIP development toward improved predictive accuracy and runtime efficiency while maintaining physical consistency. The Python package and online leaderboard are available at https://github.com/atomind-ai/mlip-arena. 14 authors · Sep 24, 2025
- Machine Learning Interatomic Potentials: library for efficient training, model development and simulation of molecular systems Machine Learning Interatomic Potentials (MLIP) are a novel in silico approach for molecular property prediction, creating an alternative to disrupt the accuracy/speed trade-off of empirical force fields and density functional theory (DFT). In this white paper, we present our MLIP library which was created with two core aims: (1) provide to industry experts without machine learning background a user-friendly and computationally efficient set of tools to experiment with MLIP models, (2) provide machine learning developers a framework to develop novel approaches fully integrated with molecular dynamics tools. The library includes in this release three model architectures (MACE, NequIP, and ViSNet), and two molecular dynamics (MD) wrappers (ASE, and JAX-MD), along with a set of pre-trained organics models. The seamless integration with JAX-MD, in particular, facilitates highly efficient MD simulations, bringing MLIP models significantly closer to industrial application. The library is available on GitHub and on PyPI under the Apache license 2.0. 14 authors · May 28, 2025