new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Customizing Visual Emotion Evaluation for MLLMs: An Open-vocabulary, Multifaceted, and Scalable Approach

Recently, Multimodal Large Language Models (MLLMs) have achieved exceptional performance across diverse tasks, continually surpassing previous expectations regarding their capabilities. Nevertheless, their proficiency in perceiving emotions from images remains debated, with studies yielding divergent results in zero-shot scenarios. We argue that this inconsistency stems partly from constraints in existing evaluation methods, including the oversight of plausible responses, limited emotional taxonomies, neglect of contextual factors, and labor-intensive annotations. To facilitate customized visual emotion evaluation for MLLMs, we propose an Emotion Statement Judgment task that overcomes these constraints. Complementing this task, we devise an automated pipeline that efficiently constructs emotion-centric statements with minimal human effort. Through systematically evaluating prevailing MLLMs, our study showcases their stronger performance in emotion interpretation and context-based emotion judgment, while revealing relative limitations in comprehending perception subjectivity. When compared to humans, even top-performing MLLMs like GPT4o demonstrate remarkable performance gaps, underscoring key areas for future improvement. By developing a fundamental evaluation framework and conducting a comprehensive MLLM assessment, we hope this work contributes to advancing emotional intelligence in MLLMs. Project page: https://github.com/wdqqdw/MVEI.

  • 5 authors
·
Sep 26, 2025

EEG Emotion Copilot: Optimizing Lightweight LLMs for Emotional EEG Interpretation with Assisted Medical Record Generation

In the fields of affective computing (AC) and brain-machine interface (BMI), the analysis of physiological and behavioral signals to discern individual emotional states has emerged as a critical research frontier. While deep learning-based approaches have made notable strides in EEG emotion recognition, particularly in feature extraction and pattern recognition, significant challenges persist in achieving end-to-end emotion computation, including real-time processing, individual adaptation, and seamless user interaction. This paper presents the EEG Emotion Copilot, a system optimizing a lightweight large language model (LLM) with 0.5B parameters operating in a local setting, which first recognizes emotional states directly from EEG signals, subsequently generates personalized diagnostic and treatment suggestions, and finally supports the automation of assisted electronic medical records. Specifically, we demonstrate the critical techniques in the novel data structure of prompt, model pruning and fine-tuning training, and deployment strategies aiming at improving real-time performance and computational efficiency. Extensive experiments show that our optimized lightweight LLM-based copilot achieves an enhanced intuitive interface for participant interaction, superior accuracy of emotion recognition and assisted electronic medical records generation, in comparison to such models with similar scale parameters or large-scale parameters such as 1.5B, 1.8B, 3B and 7B. In summary, through these efforts, the proposed copilot is expected to advance the application of AC in the medical domain, offering innovative solution to mental health monitoring. The codes will be released at https://github.com/NZWANG/EEG_Emotion_Copilot.

  • 12 authors
·
Sep 30, 2024

EmoCaliber: Advancing Reliable Visual Emotion Comprehension via Confidence Verbalization and Calibration

Visual Emotion Comprehension (VEC) aims to infer sentiment polarities or emotion categories from affective cues embedded in images. In recent years, Multimodal Large Language Models (MLLMs) have established a popular paradigm in VEC, leveraging their generalizability to unify VEC tasks defined under diverse emotion taxonomies. While this paradigm achieves notable success, it typically formulates VEC as a deterministic task, requiring the model to output a single, definitive emotion label for each image. Such a formulation insufficiently accounts for the inherent subjectivity of emotion perception, overlooking alternative interpretations that may be equally plausible to different viewers. To address this limitation, we propose equipping MLLMs with capabilities to verbalize their confidence in emotion predictions. This additional signal provides users with an estimate of both the plausibility of alternative interpretations and the MLLMs' self-assessed competence, thereby enhancing reliability in practice. Building on this insight, we introduce a three-stage training framework that progressively endows with structured reasoning, teaches to verbalize confidence, and calibrates confidence expression, culminating in EmoCaliber, a confidence-aware MLLM for VEC. Through fair and comprehensive evaluations on the unified benchmark VECBench, EmoCaliber demonstrates overall superiority against existing methods in both emotion prediction and confidence estimation. These results validate the effectiveness of our approach and mark a feasible step toward more reliable VEC systems. Project page: https://github.com/wdqqdw/EmoCaliber.

  • 3 authors
·
Dec 17, 2025 1

Sensing technologies and machine learning methods for emotion recognition in autism: Systematic review

Background: Human Emotion Recognition (HER) has been a popular field of study in the past years. Despite the great progresses made so far, relatively little attention has been paid to the use of HER in autism. People with autism are known to face problems with daily social communication and the prototypical interpretation of emotional responses, which are most frequently exerted via facial expressions. This poses significant practical challenges to the application of regular HER systems, which are normally developed for and by neurotypical people. Objective: This study reviews the literature on the use of HER systems in autism, particularly with respect to sensing technologies and machine learning methods, as to identify existing barriers and possible future directions. Methods: We conducted a systematic review of articles published between January 2011 and June 2023 according to the 2020 PRISMA guidelines. Manuscripts were identified through searching Web of Science and Scopus databases. Manuscripts were included when related to emotion recognition, used sensors and machine learning techniques, and involved children with autism, young, or adults. Results: The search yielded 346 articles. A total of 65 publications met the eligibility criteria and were included in the review. Conclusions: Studies predominantly used facial expression techniques as the emotion recognition method. Consequently, video cameras were the most widely used devices across studies, although a growing trend in the use of physiological sensors was observed lately. Happiness, sadness, anger, fear, disgust, and surprise were most frequently addressed. Classical supervised machine learning techniques were primarily used at the expense of unsupervised approaches or more recent deep learning models.

  • 8 authors
·
May 15, 2024