--- tags: - bias-detection - nlp - peft - lora - fine-tuning license: mit datasets: - ... model-index: - name: Bias Detector results: - task: type: text-classification dataset: name: ... type: ... metrics: - type: accuracy value: ... --- # Bias Detector This model is fine-tuned using **PEFT LoRA** on existing **Hugging Face models** to classify and evaluate the bias in news sources. ## Model Details - **Architecture:** Transformer-based (e.g., BERT, RoBERTa) - **Fine-tuning Method:** Parameter Efficient Fine-Tuning (LoRA) - **Use Case:** Bias classification, text summarization, sentiment analysis - **Dataset:** [...](https://huggingface.co/datasets/your-dataset) - **Training Framework:** PyTorch + Transformers ## Usage To use this model, install the necessary libraries: ```bash pip install transformers torch ``` Then load the model with: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "mjwagerman/bias-detector" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) text = "This is an example news headline." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) ```