--- license: apache-2.0 language: - en - ro base_model: nightmedia/Medra4b-abliterated-q8-mlx datasets: - drwlf/medra-thinking-768 tags: - text-generation - medical-ai - summarization - diagnostic-reasoning - gemma-3 - fine-tuned - mlx - mlx - mlx-my-repo model_size: 4B version: Medra v1 – Gemma Edition format: GGUF (Q4, Q8, BF16) author: Dr. Alexandru Lupoi & @nicoboss pipeline_tag: text-generation library_name: mlx --- # introvoyz041/Medra4b-abliterated-q8-mlx-mlx-8Bit The Model [introvoyz041/Medra4b-abliterated-q8-mlx-mlx-8Bit](https://huggingface.co/introvoyz041/Medra4b-abliterated-q8-mlx-mlx-8Bit) was converted to MLX format from [nightmedia/Medra4b-abliterated-q8-mlx](https://huggingface.co/nightmedia/Medra4b-abliterated-q8-mlx) using mlx-lm version **0.28.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("introvoyz041/Medra4b-abliterated-q8-mlx-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```