# /// script # requires-python = "==3.10" # dependencies = ["torch==2.7.0", "triton", "numpy", "kernels"] # [tool.uv.sources] # kernels = { git = "https://github.com/huggingface/kernels.git" } # /// import torch import sys import time from kernels import get_kernel, get_local_kernel from pathlib import Path load_method = 3 # 1: sym, 2: local, 3: hf if load_method == 1: sys.path.insert(0, "./torch-ext") import yamoe elif load_method == 2: yamoe = get_local_kernel(Path("result"), "yamoe") elif load_method == 3: yamoe = get_kernel("drbh/yamoe", revision="v0.2.0") torch.manual_seed(42) def benchmark_forward(model, x, tag: str, iters: int = 10, warmup: int = 10): x_local = x.detach().clone().requires_grad_(False) for _ in range(warmup): out = model(x_local) out = out[0] if isinstance(out, tuple) else out torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() start = time.perf_counter() for _ in range(iters): out = model(x_local) out = out[0] if isinstance(out, tuple) else out torch.cuda.synchronize() fwd_ms = (time.perf_counter() - start) * 1e3 / iters peak_mem = torch.cuda.max_memory_allocated() / 1024**3 # Convert to GB print(f"[{tag}] fwd: {fwd_ms:.2f} ms | peak mem: {peak_mem:.2f} GB") return fwd_ms def main(): ref_moe_cls = yamoe.vendored.gpt_oss_mlp.GptOssMLP new_moe_cls = yamoe.Yamoe batch_size, seq_len, hidden_dim = 1, 1024, 2880 num_experts, top_k = 32, 4 print("\nInput parameters:") print(f" Batch size: {batch_size}") print(f" Seq len: {seq_len}") print(f" Hidden dim: {hidden_dim}") print(f" Num experts: {num_experts}") print(f" Top-k: {top_k}") config = type("Config", (), {})() config.hidden_size = hidden_dim config.intermediate_size = hidden_dim config.num_local_experts = num_experts config.num_experts_per_tok = top_k ref_moe = ref_moe_cls(config) print("\nModel:") print(ref_moe) for p in ref_moe.parameters(): if p.dim() > 1: torch.nn.init.xavier_uniform_(p) else: torch.nn.init.zeros_(p) x = torch.randn(batch_size, seq_len, hidden_dim, device="cuda") ref_moe = ref_moe.cuda() ref_moe = ref_moe.eval() # Test reference implementation print("\nReference Implementation") # Small warmup print(" Warming up...") for _ in range(3): _ = ref_moe(x) torch.cuda.synchronize() x_ref = x.detach().requires_grad_(False) ref_output = ref_moe(x_ref) out = ref_output[0] if isinstance(ref_output, tuple) else ref_output print(f" Input shape: {x_ref.shape}") print(f" Output shape: {out.shape}") print( f" Output mean: {out.mean():.6f}, std: {out.std():.6f}, norm: {out.norm():.6f}" ) benchmark_forward(ref_moe, x, tag="reference", warmup=10, iters=20) # Switch to YAMOE forward print("\nYAMOE Implementation") ref_moe.forward = new_moe_cls.forward.__get__(ref_moe) ref_moe._routing_weights_buffer = None ref_moe._batch_indices_buffer = None ref_moe._last_batch_seq = None ref_moe._last_num_experts = None ref_moe.enable_router_grads = False ref_moe.num_experts = num_experts ref_moe.top_k = top_k # Small warmup print(" Warming up...") for _ in range(3): _ = ref_moe(x) torch.cuda.synchronize() x_cuda = x.detach().requires_grad_(False) cuda_output = ref_moe(x_cuda) out = cuda_output[0] if isinstance(cuda_output, tuple) else cuda_output print(f" Input shape: {x_cuda.shape}") print(f" Output shape: {out.shape}") print( f" Output mean: {out.mean():.6f}, std: {out.std():.6f}, norm: {out.norm():.6f}" ) benchmark_forward(ref_moe, x, tag="yamoe", warmup=10, iters=20) if __name__ == "__main__": main()