File size: 3,868 Bytes
cf66620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
906ccdf
 
 
 
 
 
 
 
 
cf66620
 
 
 
 
 
 
 
906ccdf
cf66620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
906ccdf
 
cf66620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
906ccdf
cf66620
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# /// script
# requires-python = "==3.10"
# dependencies = ["torch==2.7.0", "triton", "numpy", "kernels"]
# [tool.uv.sources]
# kernels = { git = "https://github.com/huggingface/kernels.git" }
# ///

import torch
import sys
import time
from kernels import get_kernel, get_local_kernel
from pathlib import Path

load_method = 2  # 1: sym, 2: local, 3: hf

if load_method == 1:
    sys.path.insert(0, "./torch-ext")
    import yamoe
elif load_method == 2:
    yamoe = get_local_kernel(Path("result"), "yamoe")
elif load_method == 3:
    yamoe = get_kernel("drbh/yamoe", revision="v0.1.0")

torch.manual_seed(42)


def benchmark_forward(model, x, tag: str, iters: int = 10, warmup: int = 10):
    x_local = x.detach().clone().requires_grad_(False)

    for _ in range(warmup):
        out = model(x_local)
        out = out[0] if isinstance(out, tuple) else out

    torch.cuda.reset_peak_memory_stats()
    torch.cuda.synchronize()
    start = time.perf_counter()
    for _ in range(iters):
        out = model(x_local)
        out = out[0] if isinstance(out, tuple) else out
        torch.cuda.synchronize()
    fwd_ms = (time.perf_counter() - start) * 1e3 / iters
    peak_mem = torch.cuda.max_memory_allocated() / 1024**3  # Convert to GB

    print(f"[{tag}] fwd: {fwd_ms:.2f} ms | peak mem: {peak_mem:.2f} GB")
    return fwd_ms


def main():
    ref_moe_cls = yamoe.vendored.gpt_oss_mlp.GptOssMLP
    new_moe_cls = yamoe.Yamoe

    batch_size, seq_len, hidden_dim = 1, 1024, 2880
    num_experts, top_k = 32, 4

    print("\nInput parameters:")
    print(f" Batch size: {batch_size}")
    print(f" Seq len: {seq_len}")
    print(f" Hidden dim: {hidden_dim}")
    print(f" Num experts: {num_experts}")
    print(f" Top-k: {top_k}")

    config = type("Config", (), {})()
    config.hidden_size = hidden_dim
    config.intermediate_size = hidden_dim
    config.num_local_experts = num_experts
    config.num_experts_per_tok = top_k
    ref_moe = ref_moe_cls(config)

    print("\nModel:")
    print(ref_moe)

    for p in ref_moe.parameters():
        if p.dim() > 1:
            torch.nn.init.xavier_uniform_(p)
        else:
            torch.nn.init.zeros_(p)

    x = torch.randn(batch_size, seq_len, hidden_dim, device="cuda")
    ref_moe = ref_moe.cuda()
    ref_moe = ref_moe.eval()

    # Test reference implementation
    print("\nReference Implementation")

    # Small warmup
    print(" Warming up...")
    for _ in range(3):
        _ = ref_moe(x)
    torch.cuda.synchronize()

    x_ref = x.detach().requires_grad_(False)
    ref_output = ref_moe(x_ref)
    out = ref_output[0] if isinstance(ref_output, tuple) else ref_output
    print(f" Input shape: {x_ref.shape}")
    print(f" Output shape: {out.shape}")
    print(
        f" Output mean: {out.mean():.6f}, std: {out.std():.6f}, norm: {out.norm():.6f}"
    )

    benchmark_forward(ref_moe, x, tag="reference", warmup=10, iters=20)

    # Switch to YAMOE forward
    print("\nYAMOE Implementation")
    ref_moe.forward = new_moe_cls.forward.__get__(ref_moe)
    ref_moe._routing_weights_buffer = None
    ref_moe._batch_indices_buffer = None
    ref_moe._last_batch_seq = None
    ref_moe._last_num_experts = None
    ref_moe.enable_router_grads = False
    ref_moe.num_experts = num_experts
    ref_moe.top_k = top_k

    # Small warmup
    print(" Warming up...")
    for _ in range(3):
        _ = ref_moe(x)
    torch.cuda.synchronize()

    x_cuda = x.detach().requires_grad_(False)
    cuda_output = ref_moe(x_cuda)
    out = cuda_output[0] if isinstance(cuda_output, tuple) else cuda_output
    print(f" Input shape: {x_cuda.shape}")
    print(f" Output shape: {out.shape}")
    print(
        f" Output mean: {out.mean():.6f}, std: {out.std():.6f}, norm: {out.norm():.6f}"
    )

    benchmark_forward(ref_moe, x, tag="yamoe", warmup=10, iters=20)


if __name__ == "__main__":
    main()