Datasets:
Upload dataset-preprocessor.py
Browse files- dataset-preprocessor.py +54 -0
dataset-preprocessor.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
import re
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
+
def split_into_paragraphs(text):
|
| 6 |
+
# Split by markdown headers or double newlines
|
| 7 |
+
paragraphs = re.split(r'\n\n|(?=^#)', text, flags=re.MULTILINE)
|
| 8 |
+
return [p.strip() for p in paragraphs if p.strip()]
|
| 9 |
+
|
| 10 |
+
def create_input_output_pairs(example):
|
| 11 |
+
paragraphs = example['paragraphs']
|
| 12 |
+
n_paragraphs = len(paragraphs)
|
| 13 |
+
|
| 14 |
+
# Randomly select about half of the paragraphs for input
|
| 15 |
+
n_input = max(1, random.randint(n_paragraphs // 2 - 1, n_paragraphs // 2 + 1))
|
| 16 |
+
|
| 17 |
+
input_paragraphs = paragraphs[:n_input]
|
| 18 |
+
output_paragraphs = paragraphs[n_input:]
|
| 19 |
+
|
| 20 |
+
return {
|
| 21 |
+
'inputs': ' '.join(input_paragraphs),
|
| 22 |
+
'targets': ' '.join(output_paragraphs)
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
def preprocess_dataset(dataset_name, text_column='text'):
|
| 26 |
+
# Load the dataset
|
| 27 |
+
dataset = load_dataset(dataset_name)
|
| 28 |
+
|
| 29 |
+
# Split text into paragraphs
|
| 30 |
+
dataset = dataset.map(
|
| 31 |
+
lambda example: {'paragraphs': split_into_paragraphs(example[text_column])},
|
| 32 |
+
remove_columns=[text_column]
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Create input-output pairs
|
| 36 |
+
preprocessed_dataset = dataset.map(
|
| 37 |
+
create_input_output_pairs,
|
| 38 |
+
remove_columns=['paragraphs']
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
return preprocessed_dataset
|
| 42 |
+
|
| 43 |
+
# Usage example
|
| 44 |
+
if __name__ == "__main__":
|
| 45 |
+
# Replace 'your_dataset' with the actual dataset name
|
| 46 |
+
dataset_name = 'your_dataset'
|
| 47 |
+
|
| 48 |
+
preprocessed_dataset = preprocess_dataset(dataset_name)
|
| 49 |
+
|
| 50 |
+
# Print some examples
|
| 51 |
+
print(preprocessed_dataset['train'][:5])
|
| 52 |
+
|
| 53 |
+
# Save the preprocessed dataset
|
| 54 |
+
preprocessed_dataset.save_to_disk("preprocessed_dataset")
|