JDWebProgrammer commited on
Commit
069d529
·
verified ·
1 Parent(s): 3f59ada

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -3
README.md CHANGED
@@ -1,3 +1,75 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # Dataset Card for "JDWebProgrammer/arg-agi-augmented"
6
+
7
+ ## Dataset Description
8
+
9
+ ### Overview
10
+ This dataset is an augmented version of grids extracted from the [ARC-AGI dataset](https://huggingface.co/datasets/dataartist/arc-agi) (Abstraction and Reasoning Corpus). It focuses on **individual grids** rather than full tasks or games, providing an expanded collection for pretraining and testing models like autoencoders (AEs) or latent-space reasoners.
11
+
12
+ - **Source**: Derived from the `training` split of ARC-AGI (all demonstration and test grids).
13
+ - **Augmentations**: Each original grid is expanded with 5 transformations (horizontal flip, vertical flip, 90°/180°/270° rotations), resulting in 6 variants per grid (original + 5 augments).
14
+ - **Key Note**: This is **not the full games/tasks** from ARC-AGI. It contains only the raw, augmented grids (as 2D lists of integers 0-10) for standalone use in perceptual pretraining or reconstruction testing. Use the original ARC-AGI for full few-shot reasoning tasks.
15
+
16
+ ### Dataset Structure
17
+ - **Format**: Hugging Face `Dataset` object.
18
+ - **Splits**: Single split (`train`) with one field:
19
+ - `augmented_grids`: List of 2D lists (grids). Each grid is `[[int, ...], ...]` (H x W, values 0-10).
20
+ - **Size**: ~48,000 grids (from ~400 ARC training tasks × ~4 grids/task × 6 augments).
21
+ - **Metadata**: See `metadata.json` for stats (original grids, augmentation factor).
22
+
23
+ Example grid entry:
24
+ ```python
25
+ augmented_grids[0] = [[0, 1, 0], [1, 0, 1], [0, 1, 0]] # Example 3x3 grid
26
+ ```
27
+
28
+ ### Usage
29
+ Load and use for AE pretraining:
30
+ ```python
31
+ from datasets import load_dataset
32
+ ds = load_dataset("JDWebProgrammer/arc-agi-augmented")
33
+ grids = ds['train']['augmented_grids'] # List of all grids
34
+
35
+ # Example: Batch grids for AE
36
+ def grid_to_tensor(grid):
37
+ h, w = len(grid), len(grid[0])
38
+ return torch.tensor(grid, dtype=torch.float).view(1, -1) / 10.0 # Normalize 0-1
39
+
40
+ batch = torch.cat([grid_to_tensor(g) for g in grids[:32]]) # Batch of 32
41
+ # Feed to AE: z = ae.encode(batch); recon = ae.decode(z)
42
+ ```
43
+
44
+ Ideal for:
45
+ - Pretraining perceptual models.
46
+ - Testing reconstruction accuracy (compare original vs. augmented).
47
+ - Data augmentation for fluid intelligence tasks (e.g., ARC-like pattern inference).
48
+
49
+ ### Generation
50
+ - Extracted all input/output grids from ARC-AGI `training` split demos/tests.
51
+ - Applied deterministic augmentations (flips/rotations) to expand variety without labels.
52
+ - No synthetic generation — pure augmentation of real ARC data.
53
+
54
+ ### Limitations
55
+ - Grids only (no task structure/context) — not for end-to-end ARC solving.
56
+ - Augmentations preserve structure but may introduce artifacts (e.g., rotations on asymmetric grids).
57
+ - Values 0-10 (ARC standard); normalize for models.
58
+
59
+ ### License
60
+ - Based on ARC-AGI (CC BY-SA 4.0) — inherits same license.
61
+ - Augmentations: MIT (free for research/commercial).
62
+
63
+ ### Citation
64
+ ```bibtex
65
+ @misc{dataartist/arc-agi,
66
+ title = {Augmented ARC-AGI Grids for Pretraining},
67
+ author = {dataartist},
68
+ year = {2025},
69
+ url = {https://huggingface.co/datasets/your_username/arc-augmented-grids}
70
+ }
71
+ ```
72
+
73
+ ---
74
+
75
+ *Generated for pretraining perceptual models on ARC-style puzzles. Not a substitute for full ARC tasks.*