tomaarsen HF Staff commited on
Commit
d9fdf6b
·
verified ·
1 Parent(s): 70faeb4

Add new SentenceTransformer model

Browse files

Hello!

*This pull request has been automatically generated from the [`push_to_hub`](https://sbert.net/docs/package_reference/sentence_transformer/SentenceTransformer.html#sentence_transformers.SentenceTransformer.push_to_hub) method from the Sentence Transformers library.*

## Full Model Architecture:
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```

## Tip:
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
```python
from sentence_transformers import SentenceTransformer

# TODO: Fill in the PR number
pr_number = 2
model = SentenceTransformer(
"clips/e5-large-v2-t2t",
revision=f"refs/pr/{pr_number}",
backend="torch",
)

# Verify that everything works as expected
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
print(embeddings.shape)

similarities = model.similarity(embeddings, embeddings)
print(similarities)
```

1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,11 +1,12 @@
1
  ---
2
- library_name: transformers
3
  license: mit
4
- language:
5
- - nl
6
  base_model:
7
  - intfloat/e5-large-v2
8
  pipeline_tag: sentence-similarity
 
 
9
  ---
10
 
11
  # E5-large-v2-t2t
@@ -57,14 +58,29 @@ print(scores.tolist())
57
  Below is an example for usage with sentence_transformers.
58
  ```python
59
  from sentence_transformers import SentenceTransformer
60
- model = SentenceTransformer('clips/e5-large-v2-t2t')
61
- input_texts = [
62
- 'query: hoeveel eiwitten moet een vrouw eten',
63
- 'query: top definieer',
64
- "passage: Als algemene richtlijn geldt dat de gemiddelde eiwitbehoefte voor vrouwen van 19 tot 70 jaar volgens de CDC 46 gram per dag bedraagt. Maar, zoals je in deze tabel kunt zien, moet je dit verhogen als je zwanger bent of traint voor een marathon. Bekijk de onderstaande tabel om te zien hoeveel eiwitten je dagelijks zou moeten eten.",
65
- "passage: Definitie van top voor leerlingen Engels. : 1 het hoogste punt van een berg : de top van een berg. : 2 het hoogste niveau. : 3 een bijeenkomst of reeks bijeenkomsten tussen de leiders van twee of meer regeringen."
 
 
 
 
 
 
 
 
66
  ]
67
- embeddings = model.encode(input_texts, normalize_embeddings=True)
 
 
 
 
 
 
 
68
  ```
69
  ## Benchmark Evaluation
70
  Results on MTEB-NL (models introduced in [our paper](https://arxiv.org/abs/2509.12340) and the best model per size category are highlighted in bold):
 
1
  ---
2
+ library_name: sentence-transformers
3
  license: mit
4
+ language: nl
 
5
  base_model:
6
  - intfloat/e5-large-v2
7
  pipeline_tag: sentence-similarity
8
+ tags:
9
+ - transformers
10
  ---
11
 
12
  # E5-large-v2-t2t
 
58
  Below is an example for usage with sentence_transformers.
59
  ```python
60
  from sentence_transformers import SentenceTransformer
61
+
62
+ # Load the model from Hugging Face
63
+ model = SentenceTransformer("clips/e5-large-v2-t2t")
64
+
65
+ # Perform inference using encode_query/encode_document for retrieval,
66
+ # or encode_query for general purpose embeddings. Prompt prefixes
67
+ # are automatically added with these two methods.
68
+ queries = [
69
+ 'hoeveel eiwitten moet een vrouw eten',
70
+ 'top definieer',
71
+ ]
72
+ documents = [
73
+ 'Als algemene richtlijn geldt dat de gemiddelde eiwitbehoefte voor vrouwen van 19 tot 70 jaar volgens de CDC 46 gram per dag bedraagt. Maar, zoals je in deze tabel kunt zien, moet je dit verhogen als je zwanger bent of traint voor een marathon. Bekijk de onderstaande tabel om te zien hoeveel eiwitten je dagelijks zou moeten eten.',
74
+ 'Definitie van top voor leerlingen Engels. : 1 het hoogste punt van een berg : de top van een berg. : 2 het hoogste niveau. : 3 een bijeenkomst of reeks bijeenkomsten tussen de leiders van twee of meer regeringen.',
75
  ]
76
+ query_embeddings = model.encode_query(queries)
77
+ document_embeddings = model.encode_document(documents)
78
+ print(query_embeddings.shape, document_embeddings.shape)
79
+ # (2, 1024) (2, 1024)
80
+
81
+ similarities = model.similarity(query_embeddings, document_embeddings)
82
+ # tensor([[0.8828, 0.6956],
83
+ # [0.7132, 0.8104]])
84
  ```
85
  ## Benchmark Evaluation
86
  Results on MTEB-NL (models introduced in [our paper](https://arxiv.org/abs/2509.12340) and the best model per size category are highlighted in bold):
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.0",
5
+ "transformers": "4.56.1",
6
+ "pytorch": "2.7.1+cu126"
7
+ },
8
+ "prompts": {
9
+ "query": "query: ",
10
+ "document": "passage: "
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }