{ "model_type": "ResidualConvAutoencoder", "architecture": "autoencoder", "latent_dim": 512, "image_size": 128, "input_channels": 3, "dropout": 0.1, "num_epochs_trained": 30, "best_epoch": 29, "batch_size": 1024, "learning_rate": 0.0001, "weight_decay": 1e-05, "gradient_clip": 1.0, "datasets": [ "CIFAR-10", "CIFAR-100", "STL-10-train", "STL-10-unlabeled" ], "best_val_loss": 0.00797, "training_time_minutes": 21.4, "framework": "pytorch", "task": "image-reconstruction", "separation_ratio": 19.18, "description": "Residual Convolutional Autoencoder trained on CIFAR-10, CIFAR-100, and STL-10 for deepfake detection via reconstruction error" }