| import numpy as np | |
| import os | |
| from util import * | |
| import argparse | |
| def set_requires_grad(tensor_list): | |
| for tensor in tensor_list: | |
| tensor.requires_grad = True | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--path", type=str, default="", help="idname of target person") | |
| parser.add_argument('--img_h', type=int, default=512, help='height if image') | |
| parser.add_argument('--img_w', type=int, default=512, help='width of image') | |
| args = parser.parse_args() | |
| id_dir = args.path | |
| params_dict = torch.load(os.path.join(id_dir, 'track_params.pt')) | |
| euler_angle = params_dict['euler'].cuda() | |
| trans = params_dict['trans'].cuda() / 1000.0 | |
| focal_len = params_dict['focal'].cuda() | |
| track_xys = torch.as_tensor( | |
| np.load(os.path.join(id_dir, 'track_xys.npy'))).float().cuda() | |
| num_frames = track_xys.shape[0] | |
| point_num = track_xys.shape[1] | |
| pts = torch.zeros((point_num, 3), dtype=torch.float32).cuda() | |
| set_requires_grad([euler_angle, trans, pts]) | |
| cxy = torch.Tensor((args.img_w/2.0, args.img_h/2.0)).float().cuda() | |
| optimizer_pts = torch.optim.Adam([pts], lr=1e-2) | |
| iter_num = 500 | |
| for iter in range(iter_num): | |
| proj_pts = forward_transform(pts.unsqueeze(0).expand( | |
| num_frames, -1, -1), euler_angle, trans, focal_len, cxy) | |
| loss = cal_lan_loss(proj_pts[..., :2], track_xys) | |
| optimizer_pts.zero_grad() | |
| loss.backward() | |
| optimizer_pts.step() | |
| optimizer_ba = torch.optim.Adam([pts, euler_angle, trans], lr=1e-4) | |
| iter_num = 8000 | |
| for iter in range(iter_num): | |
| proj_pts = forward_transform(pts.unsqueeze(0).expand( | |
| num_frames, -1, -1), euler_angle, trans, focal_len, cxy) | |
| loss_lan = cal_lan_loss(proj_pts[..., :2], track_xys) | |
| loss = loss_lan | |
| optimizer_ba.zero_grad() | |
| loss.backward() | |
| optimizer_ba.step() | |
| torch.save({'euler': euler_angle.detach().cpu(), | |
| 'trans': trans.detach().cpu(), | |
| 'focal': focal_len.detach().cpu()}, os.path.join(id_dir, 'bundle_adjustment.pt')) | |
| print('bundle adjustment params saved') | |