from tqdm import tqdm import os import json from concurrent.futures import ThreadPoolExecutor, as_completed from agents.reflexion_oneshot import Reflexion_Oneshot from utils.utils import clear_code, extract_function_signatures, clear_json from memories.Memory import MemoryClassMeta from prompts import prompt_for_generation, prompt_for_reflection from loguru import logger from tenacity import RetryError class OptimAgent(Reflexion_Oneshot): def __init__(self, model, dataset, corpus_path, max_perf_debug_num=5, mem_file=None): super().__init__(model, dataset, corpus_path, mem_file) self.max_perf_debug_num = max_perf_debug_num def memory_init(self, mem_file=None): """ Args: mem_file: previous stored memories, which can be loaded to continue run """ class Memory(metaclass=MemoryClassMeta, field_names=["ps", "call_err_msg", "exe_err_msg", "reflection", "function_signatures", "oneshot", "perf_candidates", "perf_strategy", "raw_code", "call_candidate", "exe_candidate", "perf_debug_num", "pass_call", "pass_exe", "pass_perf"]): pass if mem_file is not None: assert mem_file.endswith(".json"), f"expect a json file, but got {mem_file} instead" with open(mem_file, "r") as f: input_mems = json.load(f) assert len(input_mems) == len(self.dataset), f"expect {len(self.dataset)} samples, but got {len(input_mems)} instead" for ps in self.dataset.problem_states: if ps.label: fs_mem = extract_function_signatures(ps.label) else: fs_mem = None raw_code = [ps.solution] if ps.solution else [""] if mem_file is None: os_mem = self.instruction_retriever.query(ps.instruction)[0] tmp_mem = Memory(ps=ps, call_err_msg=None, exe_err_msg=None, reflection=None, function_signatures=fs_mem, oneshot=os_mem["code"], perf_candidates=[], perf_strategy=None, raw_code=raw_code, call_candidate=None, exe_candidate=None, perf_debug_num=0, pass_call=False, pass_exe=False, pass_perf=False, ) else: input_mem = input_mems[ps.filename] tmp_mem = Memory( ps=ps, call_err_msg=input_mem["call_err_msg"], exe_err_msg=input_mem["exe_err_msg"], reflection=input_mem["reflection"], function_signatures=fs_mem, oneshot=input_mem["oneshot"], perf_candidates=input_mem["perf_candidates"], perf_strategy=input_mem["perf_strategy"], raw_code=raw_code, call_candidate=input_mem["call_candidate"], exe_candidate=input_mem["exe_candidate"], perf_debug_num=input_mem["perf_debug_num"], pass_call=input_mem["pass_call"], pass_exe=input_mem["pass_exe"], pass_perf=input_mem["pass_perf"], ) self.memories.append(tmp_mem) def write_memories(self, file_path): output_dict = {} with open(file_path, "w") as f: for mem in self.memories: output = { "call_err_msg": str(mem.call_err_msg), "exe_err_msg": str(mem.exe_err_msg), "reflection": mem.reflection, "oneshot": mem.oneshot, "perf_candidates": [list(cand) for cand in mem.perf_candidates], "perf_strategy": mem.perf_strategy, "call_candidate": mem.call_candidate, "exe_candidate": mem.exe_candidate, "perf_debug_num": mem.perf_debug_num, "pass_call": mem.pass_call, "pass_exe": mem.pass_exe, "pass_perf": mem.pass_perf } output_dict[mem.ps.filename] = output json.dump(output_dict, f) def run(self, output_path=None, multi_thread=True, datalen=None, iteration_num=0, temperature=0, ancestor_num=2, start_idx=0, gpu_id=0, start_iter=0): """ Args: output_path: the folder to store the final result multi_thread: whether use multithreading for generating datalen: for debug, to specify how many data from the dataset you want to use iteration_num: how many iterations you want to run temperature: LLM temperature ancestor_num: how many samples you want to add in the prompt when optimize the code start_idx: start idx of the data rows gpu_id: which gpu you want to use when you test the scripts start_iter: which iteration you want to start with. useful when you load previous result and memory """ assert ancestor_num >= 0, f"expect ancestor_num to be larger than 0, bug got {ancestor_num}" data_len = datalen if datalen else len(self.dataset) for iter in range(start_iter, start_iter + iteration_num): logger.info(f"\n=== Iteration {iter} ===") if output_path is not None: root, extension = os.path.splitext(output_path) iter_path = f"{root}_{iter}{extension}" mem_output_path = f"{root}_mem_{iter}.json" if multi_thread: thread_num = 3 # generate solution logger.info(f"\ngenerate solution") with tqdm(total=data_len) as pbar: if multi_thread: with ThreadPoolExecutor(max_workers=thread_num) as executor: futures = {executor.submit(self.generate_solution, mem, temperature): mem for mem in self.memories[start_idx:(start_idx + data_len)]} for future in as_completed(futures): pbar.update(1) else: for mem in self.memories[start_idx:(start_idx + data_len)]: self.generate_solution(mem, temperature=temperature) pbar.update(1) # run scripts logger.info(f"\nrun scripts on gpu") if output_path is not None: root, extension = os.path.splitext(output_path) tmp_dir = f"{root}_tmp" exe_dir = f"{root}_pass_exe" perf_result_dir = f"{root}_perf_results" perf_log_dir = f"{root}_perf_logs" else: tmp_dir = "tmp" exe_dir = "pass_exe" perf_result_dir = "perf_results" perf_log_dir = "perf_logs" for mem in tqdm(self.memories[start_idx:(start_idx + data_len)]): try: pass_call, pass_exe, call_stdout, call_stderr, exe_stdout, exe_stderr = self.dataset.test_opt_correctness(mem.raw_code[0], mem.ps.filename, tmp_dir, exe_dir=exe_dir) except Exception as e: print(f"failed to test the code for {mem.ps.filename}") mem.call_err_msg = f"failed to test the code due to: {e}" mem.exe_err_msg = f"failed to test the code due to: {e}" continue if not pass_call: mem.call_err_msg = call_stderr mem.exe_err_msg = exe_stderr elif pass_call and not pass_exe: mem.pass_call = True if exe_stderr == "None": mem.exe_err_msg = None else: mem.exe_err_msg = exe_stderr mem.call_candidate = mem.raw_code[0] else: mem.pass_call = True mem.pass_exe = True mem.exe_candidate = mem.raw_code[0] script_dir = os.path.join(tmp_dir, "perf_gen") self.dataset.write_perf_file(input_folder_path=exe_dir, results_path=perf_result_dir, tmp_dir=script_dir) # if multi_thread: # self.dataset.run_perf_scripts_multithread(gpu_count=gpu_count, log_dir=perf_log_dir) # else: self.dataset.run_perf_scripts(gpu_id=gpu_id, script_dir=script_dir, log_dir=perf_log_dir) # get ms and efficiency print("===="*40) for mem in self.memories[start_idx:(start_idx + data_len)]: path_gen = os.path.join(perf_result_dir, mem.ps.filename[:-3] + ".json") path_ref = os.path.join(self.dataset.perf_ref_folder, mem.ps.filename[:-3] + ".json") if not os.path.exists(path_gen): continue try: _, efficiency, ms = self.dataset.calculate(path_gen, path_ref) # if efficiency < 0.01: # print(f"{mem.ps.filename} failed due to inordinarily low efficiency") # mem.exe_err_msg = f"inordinarily low efficiency: {efficiency}" # continue mem.pass_perf = True print(f"{mem.ps.filename}: {ms}") print(f"{mem.ps.filename}: {efficiency}\n") mem.raw_code.extend([ms, efficiency]) except Exception as e: print(f"{mem.ps.filename} failed due to {e}") mem.pass_perf = False # mem.exe_err_msg = e # generate reflections logger.info(f"\ngenerate reflections") with tqdm(total=data_len) as pbar: if multi_thread: with ThreadPoolExecutor(max_workers=thread_num) as executor: futures = {executor.submit(self.generate_reflexion, mem, temperature): mem for mem in self.memories[start_idx:(start_idx + data_len)]} for future in as_completed(futures): pbar.update(1) else: for mem in self.memories[start_idx:(start_idx + data_len)]: self.generate_reflexion(mem, temperature=temperature) pbar.update(1) # update perf_candidates for mem in self.memories[start_idx:(start_idx + data_len)]: if not mem.pass_perf: continue if len(mem.perf_candidates) < ancestor_num: mem.raw_code.append(mem.reflection) if len(mem.raw_code) < 4: logger.info(f"no latency and efficiency info in the raw code for {mem.ps.filename}") mem.pass_perf = False continue mem.perf_candidates.append(tuple(mem.raw_code)) mem.perf_candidates = sorted(mem.perf_candidates, key=lambda x: x[1], reverse=True) elif mem.perf_candidates[0][1] > mem.raw_code[1]: mem.raw_code.append(mem.reflection) mem.perf_candidates[0] = tuple(mem.raw_code) mem.perf_candidates = sorted(mem.perf_candidates, key=lambda x: x[1], reverse=True) for mem in self.memories[start_idx:(start_idx + data_len)]: if len(mem.perf_candidates) > 0: mem.ps.solution = mem.perf_candidates[-1][0] elif mem.pass_exe: mem.ps.solution = mem.exe_candidate elif mem.pass_call: mem.ps.solution = mem.call_candidate else: mem.ps.solution = mem.raw_code[0] if output_path is not None: self.dataset.write_file(iter_path) self.write_memories(mem_output_path) os.system(f'rm -rf {exe_dir}') os.system(f'rm -rf {perf_result_dir}') os.system(f'rm -rf {perf_log_dir}') def generate_solution(self, mem, temperature=0): tab = "\n" fss_text = "".join(f"* {sig}{tab}" for sig in mem.function_signatures) text = prompt_for_generation.prompt.format( instruction=mem.ps.instruction, function_signatures=fss_text ) # for the one that has perf_candidates, and the code generated in this round pass_exe, we need to generate a new code # for the one that has perf_candidates, but the code generated in this round not pass_exe, if the debug_num has exceeds the man_debug_num, then generate a new code # otherwise, go to debug if len(mem.perf_candidates) > 0 and (mem.pass_exe or (not mem.pass_exe and mem.perf_debug_num >= self.max_perf_debug_num)): mem.perf_debug_num = 0 text += """There are some reference codes(NO.1, NO.2 and so on). The reference codes are arranged in ascending order based on their performance, where lower latencies and higher efficiencies indicate better performance. According to their performance(latency in ms and efficiency in TFLOPS or GB/s) and the corresponding analysis, you need to generate a new code with better performance. You should maintain code correctness during optimization.""" text +="\nYou can use optimization strategies such as Memory access efficiency, Hardware resource utilization, IR analysis, Assembly analysis, Kernel occupancy, TorchInductor with Triton tuning knobs and Auto-tunable kernel configurations and environment variables." for i, cand in enumerate(mem.perf_candidates): text += f"\nreference code: {cand[0]}" text += f"\nOriginal latency(ms): {cand[1]}" text += f"\noriginal efficiency(TFLOPS, GB/s): {cand[2]}" text += f"\nAnalysis: {cand[3]}" text += "\nAnalyze and compare all optimization strategies based on correct codes and give a better strategy motivated by them. Generate a better optimization code based on the better strategy ." text += "\nThink before writing the optimization and no more explanation is required after the thinking." text += "\nYou should not suggest changes to the name of the function and parameter names, counts, or order." else: if not mem.raw_code or mem.raw_code[0] == "": text += f"\nHere is an example snippet of code: {mem.oneshot}" else: one_shot = self.code_retriever.query(mem.raw_code[0])[0]["code"] text += f"\nHere is an example snippet of code: {one_shot}" text += f"\nPrevious attempt implementation:{mem.raw_code[0]}" if not mem.pass_call: text += f"\nTest messages for previous attempt:{mem.call_err_msg}" text += f"\nTest messages for correctness check of previous attempt:{mem.exe_err_msg}" elif not mem.pass_exe: text += "\nThe previous attempt implementation can be run successfully." text += f"\nTest messages for correctness check of previous attempt:{mem.exe_err_msg}" if len(mem.perf_candidates) > 0: mem.perf_debug_num += 1 if mem.reflection: text += f"\nReflection on previous attempt:{mem.reflection}" text += "\nOutput your answer in json format, with the format as follows: {\"thought\": \"\", \"code\": \"\"}. Please strictly output in JSON format." text += "\nGenerate the strategy that used to correct and optimized code in the \"strategy\" field." text += "\nGenerate the correct and optimized code without explanation, which we can run directly in the \"code\" field." msg = [ {"role": "user", "content": text}, ] try: response = self.model.generate(msg, temperature=temperature, max_tokens=30000) except: logger.info(f"failed to call LLM for {mem.ps.filename}") response = {"code": ""} try: mem.raw_code = [clear_code(clear_json(response)["code"])] except: print(f"failed to extract code for {mem.ps.filename}") fail_dir = "failed_to_extract" fail_path = os.path.join(fail_dir, mem.ps.filename) os.makedirs(fail_dir, exist_ok=True) with open(fail_path, "w") as f: f.write(response) raw_code = response.split("\"code\":")[1] raw_code = raw_code.split("}")[0] mem.raw_code = [clear_code(raw_code)] # finally: if mem.raw_code[0] is None or mem.raw_code is None: print(f"raw code for {mem.ps.filename} is None") mem.raw_code = [""] mem.pass_call = False mem.pass_exe = False mem.pass_perf = False return def generate_reflexion(self, mem, temperature): if mem.pass_perf: reflect_txt = prompt_for_reflection.prompt_ga.format( problem=mem.ps.instruction, code=mem.raw_code[0], latency=mem.raw_code[1], efficiency=mem.raw_code[2] ) elif mem.pass_call and mem.pass_exe: reflect_txt = prompt_for_reflection.prompt_ga.format( problem=mem.ps.instruction, code=mem.raw_code[0], latency="", efficiency="" ) elif mem.pass_call: reflect_txt = prompt_for_reflection.prompt_exe.format( problem=mem.ps.instruction, solution=mem.raw_code[0], call_test_result="succeed", exe_test_result=mem.exe_err_msg ) else: reflect_txt = prompt_for_reflection.prompt.format( problem=mem.ps.instruction, solution=mem.raw_code[0], test_result=mem.call_err_msg ) reflect_msg = [ { "role": "user", "content": reflect_txt } ] mem.reflection = self.model.generate(reflect_msg, temperature=temperature)