|
|
from tqdm import tqdm |
|
|
import os |
|
|
import json |
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
|
from agents.reflexion_oneshot import Reflexion_Oneshot |
|
|
from utils.utils import clear_code, extract_function_signatures, clear_json |
|
|
from memories.Memory import MemoryClassMeta |
|
|
from prompts import prompt_for_generation, prompt_for_reflection |
|
|
from loguru import logger |
|
|
from tenacity import RetryError |
|
|
from dataloaders.ProblemState import tempCode |
|
|
from typing import List, Optional |
|
|
from tb_eval.evaluators.interface import get_evaluators |
|
|
class GaAgent(Reflexion_Oneshot): |
|
|
def __init__(self, model, dataset, corpus_path, max_perf_debug_num=5, mem_file=None, descendant_num=1): |
|
|
super().__init__(model, dataset, corpus_path, mem_file, descendant_num) |
|
|
self.max_perf_debug_num = max_perf_debug_num |
|
|
|
|
|
def memory_init(self, mem_file=None, descendant_num=1): |
|
|
""" |
|
|
Args: |
|
|
mem_file: previous stored memories, which can be loaded to continue run |
|
|
""" |
|
|
class Memory(metaclass=MemoryClassMeta, field_names=["ps", |
|
|
"call_err_msg", |
|
|
"exe_err_msg", |
|
|
"reflection", |
|
|
"function_signatures", |
|
|
"oneshot", |
|
|
"perf_candidates", |
|
|
"perf_strategy", |
|
|
"raw_codes", |
|
|
"call_candidate", |
|
|
"exe_candidate", |
|
|
"temp_strategy", |
|
|
"perf_debug_num", |
|
|
"pass_call", |
|
|
"pass_exe", |
|
|
"pass_perf", |
|
|
"history"]): |
|
|
pass |
|
|
|
|
|
if mem_file is not None: |
|
|
assert mem_file.endswith(".json"), f"expect a json file, but got {mem_file} instead" |
|
|
with open(mem_file, "r") as f: |
|
|
input_mems = json.load(f) |
|
|
assert len(input_mems) == len(self.dataset), f"expect {len(self.dataset)} samples, but got {len(input_mems)} instead" |
|
|
|
|
|
for ps in self.dataset.problem_states: |
|
|
|
|
|
if ps.label: |
|
|
fs_mem = extract_function_signatures(ps.label) |
|
|
else: |
|
|
fs_mem = None |
|
|
raw_codes =None |
|
|
if mem_file is None: |
|
|
os_mem = self.instruction_retriever.query(ps.instruction)[0] |
|
|
tmp_mem = Memory(ps=ps, |
|
|
call_err_msg=None, |
|
|
exe_err_msg=None, |
|
|
reflection=None, |
|
|
function_signatures=fs_mem, |
|
|
oneshot=os_mem["code"], |
|
|
perf_candidates=[], |
|
|
perf_strategy=None, |
|
|
raw_codes=raw_codes, |
|
|
call_candidate=None, |
|
|
exe_candidate=None, |
|
|
temp_strategy=None, |
|
|
perf_debug_num=0, |
|
|
pass_call=False, |
|
|
pass_exe=False, |
|
|
pass_perf=False, |
|
|
history=[[] for _ in range(descendant_num)] |
|
|
) |
|
|
else: |
|
|
input_mem = input_mems[ps.filename] |
|
|
tmp_mem = Memory( |
|
|
ps=ps, |
|
|
call_err_msg=input_mem["call_err_msg"], |
|
|
exe_err_msg=input_mem["exe_err_msg"], |
|
|
reflection=input_mem["reflection"], |
|
|
function_signatures=fs_mem, |
|
|
oneshot=input_mem["oneshot"], |
|
|
perf_candidates=input_mem["perf_candidates"], |
|
|
perf_strategy=input_mem["perf_strategy"], |
|
|
raw_codes=raw_codes, |
|
|
call_candidate=input_mem["call_candidate"], |
|
|
exe_candidate=input_mem["exe_candidate"], |
|
|
temp_strategy=input_mem["temp_strategy"], |
|
|
perf_debug_num=input_mem["perf_debug_num"], |
|
|
pass_call=input_mem["pass_call"], |
|
|
pass_exe=input_mem["pass_exe"], |
|
|
pass_perf=input_mem["pass_perf"], |
|
|
history=[[] for _ in range(descendant_num)] |
|
|
) |
|
|
|
|
|
self.memories.append(tmp_mem) |
|
|
|
|
|
def write_memories(self, file_path): |
|
|
output_dict = {} |
|
|
with open(file_path, "w") as f: |
|
|
for mem in self.memories: |
|
|
output = { |
|
|
"call_err_msg": str(mem.call_err_msg), |
|
|
"exe_err_msg": str(mem.exe_err_msg), |
|
|
"reflection": mem.reflection, |
|
|
"oneshot": mem.oneshot, |
|
|
"perf_candidates": [list(cand) for cand in mem.perf_candidates], |
|
|
"perf_strategy": mem.perf_strategy, |
|
|
"call_candidate": mem.call_candidate, |
|
|
"exe_candidate": mem.exe_candidate, |
|
|
"temp_strategy": mem.temp_strategy, |
|
|
"perf_debug_num": mem.perf_debug_num, |
|
|
"pass_call": mem.pass_call, |
|
|
"pass_exe": mem.pass_exe, |
|
|
"pass_perf": mem.pass_perf |
|
|
} |
|
|
output_dict[mem.ps.filename] = output |
|
|
json.dump(output_dict, f) |
|
|
|
|
|
def run(self, output_path=None, multi_thread=True, datalen=None, iteration_num=0, temperature=0, ancestor_num=5, descendant_num=1, mutation=False, start_idx=0, gpu_id=0, start_iter=0, descendant_debug=1, target_gpu='MI250', profiling=False): |
|
|
""" |
|
|
Args: |
|
|
output_path: the folder to store the final result |
|
|
multi_thread: whether use multithreading for generating |
|
|
datalen: for debug, to specify how many data from the dataset you want to use |
|
|
iteration_num: how many iterations you want to run |
|
|
temperature: LLM temperature |
|
|
ancestor_num: how many samples you want to add in the prompt when optimize the code |
|
|
descendant_num: how many codes you want to generate in one try |
|
|
start_idx: start idx of the data rows |
|
|
gpu_id: which gpu you want to use when you test the scripts |
|
|
start_iter: which iteration you want to start with. useful when you load previous result and memory |
|
|
""" |
|
|
assert ancestor_num >= 0, f"expect ancestor_num to be larger than 0, bug got {ancestor_num}" |
|
|
assert descendant_num >= 0, f"expect descendant_num to be larger than 0, bug got {descendant_num}" |
|
|
assert descendant_debug >= 0, f"expect descendant_debug to be larger than 0, bug got {descendant_debug}" |
|
|
data_len = datalen if datalen else len(self.dataset) |
|
|
evaluator = get_evaluators['tbg']() |
|
|
for iter in range(start_iter, iteration_num): |
|
|
logger.info(f"\n=== Iteration {iter} ===") |
|
|
if output_path is not None: |
|
|
root, extension = os.path.splitext(output_path) |
|
|
iter_path = f"{root}_{iter}{extension}" |
|
|
mem_output_path = f"{root}_mem_{iter}.json" |
|
|
|
|
|
if multi_thread: |
|
|
thread_num = 3 |
|
|
|
|
|
logger.info(f"\ngenerate solution") |
|
|
with tqdm(total=data_len) as pbar: |
|
|
if multi_thread: |
|
|
|
|
|
with ThreadPoolExecutor(max_workers=thread_num) as executor: |
|
|
futures = {executor.submit(self.generate_solution, mem, temperature, descendant_num, mutation): mem for mem in self.memories[start_idx:(start_idx + data_len)]} |
|
|
for future in as_completed(futures): |
|
|
pbar.update(1) |
|
|
else: |
|
|
for mem in self.memories[start_idx:data_len]: |
|
|
self.generate_solution(mem, temperature=temperature, descendant_num=descendant_num, mutation=mutation) |
|
|
pbar.update(1) |
|
|
|
|
|
|
|
|
logger.info(f"\ngenerate LLM evaluation") |
|
|
with tqdm(total=data_len) as pbar: |
|
|
if multi_thread: |
|
|
with ThreadPoolExecutor(max_workers=thread_num) as executor: |
|
|
futures = {executor.submit(self.generate_llm_evaluate, mem, temperature): mem for mem in self.memories[start_idx:(start_idx + data_len)]} |
|
|
for future in as_completed(futures): |
|
|
pbar.update(1) |
|
|
else: |
|
|
for mem in self.memories[start_idx:data_len]: |
|
|
self.generate_llm_evaluate(mem, temperature=temperature) |
|
|
pbar.update(1) |
|
|
|
|
|
|
|
|
logger.info(f"\nrun call scripts on gpu") |
|
|
if output_path is None or (hasattr(self.dataset, 'rocm_tests') and self.dataset.rocm_tests): |
|
|
tmp_dir = "tmp" |
|
|
exe_dir = "pass_exe" |
|
|
perf_result_dir = "perf_results" |
|
|
perf_log_dir = "perf_logs" |
|
|
else: |
|
|
root, extension = os.path.splitext(output_path) |
|
|
tmp_dir = f"{root}_tmp" |
|
|
exe_dir = f"{root}_pass_exe" |
|
|
perf_result_dir = f"{root}_perf_results" |
|
|
perf_log_dir = f"{root}_perf_logs" |
|
|
for mem in tqdm(self.memories[start_idx:data_len]): |
|
|
if mem.raw_codes: |
|
|
for i in range(len(mem.raw_codes)): |
|
|
raw_code = mem.raw_codes[i] |
|
|
if raw_code.pass_exe: |
|
|
continue |
|
|
try: |
|
|
if raw_code.code : |
|
|
opname = mem.ps.opname + f"_{i}" + ".py" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pass_call, pass_exe, call_stdout, call_stderr, exe_stdout, exe_stderr = self.dataset.test_opt_correctness(raw_code.code, mem.ps.filename, opname, tmp_dir, exe_dir=exe_dir, gpu_id=gpu_id) |
|
|
|
|
|
else: |
|
|
pass_call, pass_exe, speedup, call_stdout, call_stderr, exe_stdout, exe_stderr = False, False, 0.0, "", "Code is empty", "", "Code is empty" |
|
|
|
|
|
except Exception as e: |
|
|
print(f"failed to test the code for {mem.ps.filename}") |
|
|
raw_code.test_stdout = f"failed to test the code due to: {e}" |
|
|
raw_code.test_stderr = f"failed to test the code due to: {e}" |
|
|
continue |
|
|
if not pass_call: |
|
|
raw_code.test_stdout = call_stdout |
|
|
raw_code.test_stderr = call_stderr |
|
|
raw_code.profilig = None |
|
|
elif pass_call and not pass_exe: |
|
|
raw_code.pass_call = True |
|
|
raw_code.test_stdout = exe_stdout |
|
|
raw_code.test_stderr = exe_stderr |
|
|
mem.call_candidate = raw_code.code |
|
|
mem.temp_strategy = raw_code.strategy |
|
|
mem.pass_call = True |
|
|
raw_code.profilig= None |
|
|
else: |
|
|
raw_code.pass_call = True |
|
|
raw_code.pass_exe = True |
|
|
mem.pass_call = True |
|
|
mem.exe_candidate = raw_code.code |
|
|
mem.call_candidate = raw_code.code |
|
|
mem.temp_strategy = raw_code.strategy |
|
|
if profiling: |
|
|
pass_prfiler, stdout_profile, stderr_profile, stdout_analyze = self.dataset.test_kernel_profiling(raw_code.code, mem.ps.filename, tmp_dir, exe_dir=exe_dir, target_gpu=target_gpu, timeout=30*60) |
|
|
raw_code.profilig = stdout_analyze |
|
|
mem.call_err_msg = raw_code.test_stdout |
|
|
mem.exe_err_msg = raw_code.test_stderr |
|
|
descendant_debug = min(descendant_debug,len(mem.raw_codes)) |
|
|
if sum(rc.pass_exe for rc in mem.raw_codes)>=descendant_debug: |
|
|
mem.pass_exe = True |
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"\nrun call scripts on gpu") |
|
|
|
|
|
root, extension = os.path.splitext(output_path) |
|
|
exe_dir = os.path.join(root,exe_dir) if output_path else exe_dir |
|
|
perf_result_dir = os.path.join(root, perf_result_dir) if output_path else perf_result_dir |
|
|
if not os.listdir(exe_dir): |
|
|
pass |
|
|
logger.warning(f"No scripts passed correctness checks in iteration {iter}. Skipping performance evaluation.") |
|
|
else: |
|
|
perf_results_dict = {} |
|
|
|
|
|
if hasattr(self.dataset, 'rocm_tests') and self.dataset.rocm_tests: |
|
|
perf_results_dict = self.dataset.run_perf_evaluation( |
|
|
exec_folder=exe_dir, |
|
|
gen_perf_folder=perf_result_dir, |
|
|
gpu_id=gpu_id |
|
|
) |
|
|
|
|
|
for mem in tqdm(self.memories[start_idx:(start_idx + data_len)],desc="Performance Evaluation"): |
|
|
if mem.raw_codes: |
|
|
for i in range(len(mem.raw_codes)): |
|
|
raw_code = mem.raw_codes[i] |
|
|
if not raw_code.pass_exe or raw_code.pass_perf: |
|
|
continue |
|
|
opname = mem.ps.opname + f"_{i}" + ".json" |
|
|
speedup = None |
|
|
eff=None |
|
|
if opname in perf_results_dict.keys(): |
|
|
|
|
|
speedup = perf_results_dict[opname].get("ms") |
|
|
eff = perf_results_dict[opname].get("efficiency") |
|
|
if speedup is not None and eff is not None: |
|
|
raw_code.pass_perf = True |
|
|
mem.pass_perf = True |
|
|
raw_code.latency = speedup |
|
|
raw_code.eff = eff |
|
|
else: |
|
|
raw_code.pass_perf = False |
|
|
mem.pass_perf = False |
|
|
raw_code.latency = None |
|
|
raw_code.eff = None |
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"\ngenerate reflections") |
|
|
with tqdm(total=data_len) as pbar: |
|
|
if multi_thread: |
|
|
with ThreadPoolExecutor(max_workers=thread_num) as executor: |
|
|
futures = {executor.submit(self.generate_reflexion, mem, temperature): mem for mem in self.memories[start_idx:(start_idx + data_len)]} |
|
|
for future in as_completed(futures): |
|
|
pbar.update(1) |
|
|
else: |
|
|
for mem in self.memories[start_idx:data_len]: |
|
|
self.generate_reflexion(mem, temperature=temperature) |
|
|
pbar.update(1) |
|
|
|
|
|
|
|
|
|
|
|
for mem in self.memories[start_idx:data_len]: |
|
|
if mem.raw_codes: |
|
|
for i in range(len(mem.raw_codes)): |
|
|
raw_code = mem.raw_codes[i] |
|
|
mem.history[i].append(raw_code) |
|
|
codes_sorted = sorted(mem.history[i], key=lambda x: x.llm_metric, reverse=True) |
|
|
mem.history[i] = codes_sorted[:5] |
|
|
if raw_code.pass_perf and raw_code.strategy: |
|
|
raw_code.strategy = None |
|
|
self.update_perf_candidates(mem=mem, raw_code=raw_code, ancestor_num=ancestor_num) |
|
|
if len(mem.perf_candidates) > 0: |
|
|
mem.ps.solution = mem.perf_candidates[0][0] |
|
|
mem.ps.speedup = mem.perf_candidates[0][1] |
|
|
elif mem.exe_candidate: |
|
|
mem.ps.solution = mem.exe_candidate |
|
|
elif mem.call_candidate: |
|
|
mem.ps.solution = mem.call_candidate |
|
|
elif mem.raw_codes: |
|
|
mem.ps.solution = mem.raw_codes[0].code |
|
|
|
|
|
if output_path is not None: |
|
|
self.dataset.write_file(iter_path) |
|
|
self.write_memories(mem_output_path) |
|
|
|
|
|
os.system(f'rm -rf {exe_dir}') |
|
|
os.system(f'rm -rf {perf_result_dir}') |
|
|
os.system(f'rm -rf {perf_log_dir}') |
|
|
os.system(f'rm -rf {tmp_dir}') |
|
|
|
|
|
def generate_solution(self, mem, temperature=0, descendant_num=1, mutation=False): |
|
|
|
|
|
tab = "\n" |
|
|
fss_text = "".join(f"* {sig}{tab}" for sig in mem.function_signatures) |
|
|
text = prompt_for_generation.prompt_rocm.format( |
|
|
instruction=mem.ps.instruction, |
|
|
function_signatures=fss_text |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (mem.perf_debug_num >= self.max_perf_debug_num) or mem.pass_exe: |
|
|
mem.perf_debug_num = 0 |
|
|
mem.raw_codes =None |
|
|
if len(mem.perf_candidates) > 0 and not mem.raw_codes: |
|
|
text += """\nThere are some Optimized codes(NO.1, NO.2 and so on) to solve the Problem. The Optimized codes are arranged in ascending order based on their performance, where higher speedup and higher efficiencies indicate better performance. According to their performance(speedup is the latency compared with golden reference code and efficiency in TFLOPS or GB/s) and the corresponding analysis, you need to generate a new code with better performance. You should maintain code correctness during optimization.""" |
|
|
text +="\nYou can use optimization strategies such as Memory access efficiency, Hardware resource utilization, IR analysis, Assembly analysis, Kernel occupancy, TorchInductor with Triton tuning knobs and Auto-tunable kernel configurations and environment variables." |
|
|
for i, cand in enumerate(mem.perf_candidates): |
|
|
text += f"\n### Reference {i+1}" |
|
|
text += f"\nOptimized code: {cand[0]}" |
|
|
text += f"\nOptimized speedup: {cand[1]}" |
|
|
text += f"\nOriginal efficiency(TFLOPS, GB/s): {cand[2]}" |
|
|
if cand[3]: |
|
|
text += f"\nStrategy: {cand[3]}" |
|
|
if cand[4]: |
|
|
text += f"\nRocprof-compute profiling result:{cand[4]}" |
|
|
if mutation: |
|
|
text += "\nGenerate a better strategy completely different from Optimized Implementation. Based on the better strategy generate a better optimization code." |
|
|
else: |
|
|
text += "\nAnalyze and compare all optimization strategies based on Optimized Implementation codes and give a better strategy motivated by them. Based on the better strategy generate a better optimization code to get a higher speedup." |
|
|
else: |
|
|
if not mem.exe_candidate and not mem.call_candidate and not mem.raw_codes: |
|
|
text += f"\nHere is an example snippet of code: {mem.oneshot}" |
|
|
elif mem.raw_codes: |
|
|
one_shot = self.code_retriever.query(mem.raw_codes[0].code)[0]["code"] |
|
|
text += f"\nHere is an example snippet of code: {one_shot}" |
|
|
|
|
|
if mem.raw_codes : |
|
|
for i in range(len(mem.raw_codes)): |
|
|
raw_code = mem.raw_codes[i] |
|
|
if not raw_code.pass_perf: |
|
|
history_text = self._build_history_prompt(mem.history[i]) |
|
|
text += f"\nPrevious attempt implementations:{history_text}" |
|
|
text += prompt_for_generation.system_prompt |
|
|
if raw_code.reflections: |
|
|
raw_code.reflections = None |
|
|
try: |
|
|
raw_code.code, raw_code.strategy = self.call_llm_code(prompt=text, temperature=temperature) |
|
|
except: |
|
|
logger.info(f"failed to call LLM for {mem.ps.filename}") |
|
|
mem.perf_debug_num +=1 |
|
|
return |
|
|
|
|
|
gens_codes: List[tempCode] = [] |
|
|
for i in range(descendant_num): |
|
|
gen_code = tempCode() |
|
|
try: |
|
|
text += prompt_for_generation.system_prompt |
|
|
gen_code.code, gen_code.strategy = self.call_llm_code(prompt=text, temperature=temperature) |
|
|
except: |
|
|
logger.info(f"failed to call LLM for {mem.ps.filename}") |
|
|
gens_codes.append(gen_code) |
|
|
mem.raw_codes = gens_codes |
|
|
mem.pass_exe = False |
|
|
mem.pass_call = False |
|
|
mem.pass_perf = False |
|
|
return |
|
|
|
|
|
|
|
|
def generate_reflexion(self, mem, temperature): |
|
|
|
|
|
tab = "\n" |
|
|
fss_text = "".join(f"* {sig}{tab}" for sig in mem.function_signatures) |
|
|
m_info = """ |
|
|
- runnable test: test if the code can be successfully executed. |
|
|
- correctness test: test if the output of the code is correct, i.e. if the code does implement the functionality required in the original problem. |
|
|
- speedup: measures the total time from kernel launch to completion, reflecting the responsiveness and overhead of executing a single instance of the kernel on the GPU. And compare the time with golden reference code to get speedup. |
|
|
""" |
|
|
|
|
|
if mem.raw_codes : |
|
|
for i in range(len(mem.raw_codes)): |
|
|
raw_code = mem.raw_codes[i] |
|
|
if raw_code.reflections: |
|
|
continue |
|
|
history_text = self._build_history_prompt(mem.history[i]) |
|
|
if raw_code.pass_exe: |
|
|
result_txt = f""" |
|
|
- runnable test: Succeed |
|
|
- correctness test: Succeed |
|
|
- speedup: {raw_code.latency} |
|
|
""" |
|
|
reflect_txt = prompt_for_reflection.prompt_evolve_strategy_optimize_rocm.format( |
|
|
instruction=mem.ps.instruction, |
|
|
function_signatures=fss_text, |
|
|
metrics_info=m_info, |
|
|
evolution_history=history_text, |
|
|
current_program=raw_code.code, |
|
|
test_result=result_txt, |
|
|
reflection=raw_code.reflections |
|
|
) |
|
|
else: |
|
|
if raw_code.pass_call: |
|
|
result_txt = f""" |
|
|
- runnable test: Succeed |
|
|
- correctness test: Failed |
|
|
Error Message: {raw_code.test_stderr} |
|
|
""" |
|
|
else: |
|
|
result_txt = f""" |
|
|
- runnable test: Failed |
|
|
Error Message: {raw_code.test_stderr} |
|
|
- correctness test: Failed |
|
|
Error Message: {raw_code.test_stderr} |
|
|
""" |
|
|
|
|
|
reflect_txt = prompt_for_reflection.prompt_evolve_reflect_rocm.format( |
|
|
instruction=mem.ps.instruction, |
|
|
function_signatures=fss_text, |
|
|
metrics_info=m_info, |
|
|
evolution_history=history_text, |
|
|
current_program=raw_code.code, |
|
|
test_result=result_txt, |
|
|
reflection=raw_code.reflections |
|
|
) |
|
|
|
|
|
|
|
|
reflect_msg = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": reflect_txt |
|
|
} |
|
|
] |
|
|
raw_code.reflections = self.model.generate(reflect_msg, temperature=temperature) |
|
|
|
|
|
|
|
|
def call_llm_code(self, prompt, temperature): |
|
|
msg = [{"role": "user", "content": prompt}] |
|
|
try: |
|
|
|
|
|
response = self.model.generate(msg, temperature=temperature, max_tokens=30000) |
|
|
opti = clear_json(response) |
|
|
if 'code' in opti.keys() and 'strategy' in opti.keys(): |
|
|
code = clear_code(opti['code']) |
|
|
strategy = opti['strategy'] |
|
|
return code, strategy |
|
|
except: |
|
|
logger.info(f"failed to call LLM") |
|
|
raise ValueError("failed to call LLM") |
|
|
|
|
|
def call_llm_reflecion(self, prompt, temperature): |
|
|
msg = [{"role": "user", "content": prompt}] |
|
|
try: |
|
|
response = self.model.generate(msg, temperature=temperature, max_tokens=30000) |
|
|
opti = clear_json(response) |
|
|
if 'reflection' in opti.keys(): |
|
|
reflection = opti['reflection'] |
|
|
return reflection |
|
|
except: |
|
|
logger.info(f"failed to call LLM") |
|
|
raise ValueError("failed to call LLM") |
|
|
|
|
|
def update_perf_candidates(self,mem, raw_code: tempCode, ancestor_num): |
|
|
if len(mem.perf_candidates) < ancestor_num: |
|
|
candidate = [raw_code.code, raw_code.latency, raw_code.eff, raw_code.reflections, raw_code.profilig] |
|
|
mem.perf_candidates.append(tuple(candidate)) |
|
|
mem.perf_candidates = sorted(mem.perf_candidates, key=lambda x: x[1], reverse=True) |
|
|
|
|
|
elif mem.perf_candidates[-1][1] <= raw_code.latency: |
|
|
candidate = [raw_code.code, raw_code.latency, raw_code.eff, raw_code.reflections, raw_code.profilig] |
|
|
mem.perf_candidates[-1] = tuple(candidate) |
|
|
mem.perf_candidates = sorted(mem.perf_candidates, key=lambda x: x[1], reverse=True) |
|
|
|
|
|
def _build_history_prompt(self, history): |
|
|
text = "" |
|
|
history_template = """ |
|
|
### Attempt {attempt_number} |
|
|
- Code: |
|
|
```python |
|
|
{code} |
|
|
``` |
|
|
|
|
|
- Test Results: |
|
|
{test_results} |
|
|
|
|
|
|
|
|
- Analysis: |
|
|
{reflection} |
|
|
""" |
|
|
for i, raw_code in enumerate(history): |
|
|
if raw_code.pass_perf: |
|
|
test_txt = """ |
|
|
runnable test: Succeed |
|
|
correctness test: Succeed |
|
|
speedup: {latency} |
|
|
""" |
|
|
test_txt = test_txt.format( |
|
|
speedup=raw_code.latency |
|
|
) |
|
|
elif raw_code.pass_exe and not raw_code.pass_perf: |
|
|
test_txt = """ |
|
|
runnable test: Succeed |
|
|
correctness test: Succeed |
|
|
""" |
|
|
elif raw_code.pass_call and not raw_code.pass_exe: |
|
|
test_txt = """ |
|
|
runnable test: Succeed |
|
|
correctness test: {err_msg} |
|
|
""" |
|
|
test_txt = test_txt.format( |
|
|
err_msg=raw_code.test_stderr |
|
|
) |
|
|
elif not raw_code.pass_call: |
|
|
test_txt = """ |
|
|
runnable test: {err_msg} |
|
|
""" |
|
|
test_txt = test_txt.format( |
|
|
err_msg=raw_code.test_stderr |
|
|
) |
|
|
text += history_template.format( |
|
|
attempt_number=i+1, |
|
|
code=raw_code.code, |
|
|
test_results=test_txt, |
|
|
reflection=raw_code.reflections |
|
|
) |
|
|
|
|
|
return text |
|
|
|
|
|
|
|
|
def generate_llm_evaluate(self, mem, temperature=1.0): |
|
|
if mem.raw_codes : |
|
|
for i in range(len(mem.raw_codes)): |
|
|
raw_code = mem.raw_codes[i] |
|
|
if not raw_code.pass_perf: |
|
|
text = "" |
|
|
text += prompt_for_generation.llm_evaluate_prompt.format(current_program=raw_code.code) |
|
|
msg = [{"role": "user", "content": text}] |
|
|
try: |
|
|
response = self.model.generate(msg, temperature=temperature, max_tokens=30000) |
|
|
llm_eval = clear_json(response) |
|
|
metric = 0.0 |
|
|
for k, v in llm_eval.items(): |
|
|
if k == "reasoning": |
|
|
continue |
|
|
if isinstance(v, float) or isinstance(v, int): |
|
|
metric += float(v) |
|
|
raw_code.llm_metric = metric |
|
|
raw_code.llm_eval = llm_eval |
|
|
except: |
|
|
logger.info(f"failed to generate LLM evaluation") |
|
|
raise ValueError("failed to generate LLM evaluation") |