import gradio as gr from huggingface_hub import InferenceClient import os # Usa tu token de Hugging Face (guárdalo como variable de entorno HF_TOKEN) HF_TOKEN = os.getenv("HF_TOKEN") # Cliente de inferencia client = InferenceClient(api_key=HF_TOKEN) def generate_image(prompt, steps, guidance): """ Genera una imagen con Flux.1 Schnell usando Hugging Face Inference API. """ image = client.text_to_image( model="black-forest-labs/flux-1-schnell", # Modelo Flux inputs=prompt, parameters={ "num_inference_steps": steps, "guidance_scale": guidance } ) return image # Interfaz con Gradio with gr.Blocks() as demo: gr.Markdown("# 🚀 Generador de imágenes con Flux.1 Schnell") with gr.Row(): prompt = gr.Textbox(label="Prompt", value="Astronauta montando un caballo") with gr.Row(): steps = gr.Slider(1, 50, value=5, step=1, label="Pasos de inferencia") guidance = gr.Slider(1, 20, value=7, step=1, label="Guidance scale") output = gr.Image(type="pil") btn = gr.Button("Generar imagen") btn.click(generate_image, [prompt, steps, guidance], output) demo.launch()