QualityAI commited on
Commit
51af1cb
·
verified ·
1 Parent(s): b84e7a3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -176
README.md CHANGED
@@ -1,202 +1,89 @@
1
  ---
2
- library_name: transformers
3
  tags:
4
- - unsloth
5
- - trl
6
- - sft
 
 
7
  ---
8
 
9
- # Model Card for Model ID
10
 
11
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
12
 
 
13
 
 
 
 
 
14
 
15
- ## Model Details
16
-
17
- ### Model Description
18
-
19
- <!-- Provide a longer summary of what this model is. -->
20
-
21
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
22
-
23
- - **Developed by:** [More Information Needed]
24
- - **Funded by [optional]:** [More Information Needed]
25
- - **Shared by [optional]:** [More Information Needed]
26
- - **Model type:** [More Information Needed]
27
- - **Language(s) (NLP):** [More Information Needed]
28
- - **License:** [More Information Needed]
29
- - **Finetuned from model [optional]:** [More Information Needed]
30
-
31
- ### Model Sources [optional]
32
-
33
- <!-- Provide the basic links for the model. -->
34
-
35
- - **Repository:** [More Information Needed]
36
- - **Paper [optional]:** [More Information Needed]
37
- - **Demo [optional]:** [More Information Needed]
38
-
39
- ## Uses
40
-
41
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
-
43
- ### Direct Use
44
-
45
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
46
-
47
- [More Information Needed]
48
-
49
- ### Downstream Use [optional]
50
-
51
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
52
-
53
- [More Information Needed]
54
-
55
- ### Out-of-Scope Use
56
-
57
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
58
-
59
- [More Information Needed]
60
-
61
- ## Bias, Risks, and Limitations
62
-
63
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
64
-
65
- [More Information Needed]
66
-
67
- ### Recommendations
68
-
69
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
70
-
71
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
72
-
73
- ## How to Get Started with the Model
74
-
75
- Use the code below to get started with the model.
76
-
77
- [More Information Needed]
78
 
79
  ## Training Details
80
 
81
- ### Training Data
82
-
83
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
84
-
85
- [More Information Needed]
86
-
87
- ### Training Procedure
88
-
89
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
90
-
91
- #### Preprocessing [optional]
92
-
93
- [More Information Needed]
94
-
95
-
96
- #### Training Hyperparameters
97
-
98
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
99
-
100
- #### Speeds, Sizes, Times [optional]
101
-
102
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
103
-
104
- [More Information Needed]
105
-
106
- ## Evaluation
107
-
108
- <!-- This section describes the evaluation protocols and provides the results. -->
109
-
110
- ### Testing Data, Factors & Metrics
111
-
112
- #### Testing Data
113
-
114
- <!-- This should link to a Dataset Card if possible. -->
115
-
116
- [More Information Needed]
117
-
118
- #### Factors
119
-
120
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
121
-
122
- [More Information Needed]
123
-
124
- #### Metrics
125
-
126
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
127
-
128
- [More Information Needed]
129
-
130
- ### Results
131
-
132
- [More Information Needed]
133
-
134
- #### Summary
135
-
136
-
137
-
138
- ## Model Examination [optional]
139
-
140
- <!-- Relevant interpretability work for the model goes here -->
141
-
142
- [More Information Needed]
143
-
144
- ## Environmental Impact
145
-
146
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
147
-
148
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
149
-
150
- - **Hardware Type:** [More Information Needed]
151
- - **Hours used:** [More Information Needed]
152
- - **Cloud Provider:** [More Information Needed]
153
- - **Compute Region:** [More Information Needed]
154
- - **Carbon Emitted:** [More Information Needed]
155
-
156
- ## Technical Specifications [optional]
157
-
158
- ### Model Architecture and Objective
159
-
160
- [More Information Needed]
161
-
162
- ### Compute Infrastructure
163
-
164
- [More Information Needed]
165
-
166
- #### Hardware
167
-
168
- [More Information Needed]
169
-
170
- #### Software
171
-
172
- [More Information Needed]
173
 
174
- ## Citation [optional]
 
 
 
175
 
176
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
177
 
178
- **BibTeX:**
 
 
179
 
180
- [More Information Needed]
181
 
182
- **APA:**
 
 
 
 
183
 
184
- [More Information Needed]
185
 
186
- ## Glossary [optional]
 
 
187
 
188
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
189
 
190
- [More Information Needed]
191
 
192
- ## More Information [optional]
 
 
193
 
194
- [More Information Needed]
 
 
 
 
 
 
195
 
196
- ## Model Card Authors [optional]
 
197
 
198
- [More Information Needed]
 
199
 
200
- ## Model Card Contact
 
 
201
 
202
- [More Information Needed]
 
 
 
1
  ---
2
+ language: en
3
  tags:
4
+ - test-model
5
+ - reasoning
6
+ - unsloth
7
+ - fine-tuning
8
+ - small-model
9
  ---
10
 
11
+ # QAI-QDERM-1.5B Test Model
12
 
13
+ **Model Name:** QAI-QDERM-1.5B
14
+ **Base Model:** unsloth/DeepSeek-R1-Distill-Qwen-1.5B-bnb-4bit
15
+ **Framework:** Transformers, Unsloth, TRL
16
+ **Architecture:** Transformer-based language model
17
+ **Quantization:** 4-bit (using bitsandbytes)
18
+ **Trainable Parameters:** ~50M (via LoRA adapters)
19
 
20
+ ## Intended Use
21
 
22
+ This model is a **test model** designed for research purposes. It is optimized to:
23
+ - **Test Reasoning:** Evaluate chain-of-thought reasoning and step-by-step problem solving.
24
+ - **Rapid Prototyping:** Serve as a lightweight platform for experimentation with domain-specific tasks such as dermatology Q&A and medical reasoning.
25
+ - **Parameter-Efficient Fine-Tuning:** Demonstrate the effectiveness of LoRA-based fine-tuning on a smaller model.
26
 
27
+ **Note:** This model is not intended for production use.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  ## Training Details
30
 
31
+ - **Datasets:**
32
+ - *Dermatology Question Answer Dataset* (Mreeb/Dermatology-Question-Answer-Dataset-For-Fine-Tuning)
33
+ - *Medical Reasoning SFT Dataset* (FreedomIntelligence/medical-o1-reasoning-SFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ - **Training Strategy:**
36
+ A two-stage fine-tuning process was used:
37
+ 1. **Stage 1:** Fine-tuning on Dermatology Q&A data.
38
+ 2. **Stage 2:** Further fine-tuning on Medical Reasoning data.
39
 
40
+ - **Fine-Tuning Method:**
41
+ Parameter-efficient fine-tuning using LoRA via Unsloth, updating approximately 18 million parameters.
42
 
43
+ - **Hyperparameters:**
44
+ - **Stage 1:** Learning rate ≈ 2e-4, effective batch size of 8 (per-device batch size 2, gradient accumulation steps 4), and a total of 546 training steps.
45
+ - **Stage 2:** Further fine-tuning with a lower learning rate (≈ 3e-5) and controlled via `max_steps` (e.g., 1500 steps) for additional refinement.
46
 
47
+ ## Evaluation & Performance
48
 
49
+ - **Metrics:**
50
+ Training loss was monitored during fine-tuning, and qualitative assessments were made on reasoning prompts and Q&A tasks.
51
+ - **Observations:**
52
+ - The model shows promising chain-of-thought reasoning ability on test prompts.
53
+ - As a small test model, its performance is intended to be a baseline for further experimentation and is not expected to match larger production models.
54
 
55
+ ## Limitations
56
 
57
+ - **Scale:** Due to its small size, the model may struggle with very complex reasoning tasks.
58
+ - **Data:** The limited domain-specific fine-tuning data may result in occasional inaccuracies.
59
+ - **Intended Use:** This model is for research and testing purposes only.
60
 
61
+ ## Inference Example
62
 
63
+ Below is an example of how to run inference with this model:
64
 
65
+ ```python
66
+ from unsloth import FastLanguageModel
67
+ from transformers import AutoTokenizer
68
 
69
+ # Load the fine-tuned model and tokenizer
70
+ model, tokenizer = FastLanguageModel.from_pretrained(
71
+ "your_hf_username/unsloth_final_model", # Replace with your model repo
72
+ max_seq_length=2048,
73
+ load_in_4bit=True,
74
+ device_map="auto"
75
+ )
76
 
77
+ # Enable fast inference mode
78
+ FastLanguageModel.for_inference(model)
79
 
80
+ # Define a prompt
81
+ prompt = "Explain the concept of psoriasis and its common symptoms."
82
 
83
+ # Tokenize and generate a response
84
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
85
+ outputs = model.generate(**inputs, max_new_tokens=150, use_cache=True)
86
 
87
+ # Decode and print the result
88
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
89
+ print("Generated Output:", result)