Update README.md
Browse files
README.md
CHANGED
|
@@ -32,16 +32,90 @@ We expand the Semantic tokens experiment with WhisperVQ as a tokenizer for audio
|
|
| 32 |
|
| 33 |
## How to Get Started with the Model
|
| 34 |
|
|
|
|
|
|
|
| 35 |
First, we need to convert the audio file to sound tokens
|
| 36 |
|
| 37 |
```python
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
```
|
| 40 |
|
| 41 |
Then, we can inference the model the same as any other LLM.
|
| 42 |
|
| 43 |
```python
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
```
|
| 46 |
|
| 47 |
## Training process
|
|
|
|
| 32 |
|
| 33 |
## How to Get Started with the Model
|
| 34 |
|
| 35 |
+
Try this model using [Google Colab Notebook](https://colab.research.google.com/drive/18IiwN0AzBZaox5o0iidXqWD1xKq11XbZ?usp=sharing).
|
| 36 |
+
|
| 37 |
First, we need to convert the audio file to sound tokens
|
| 38 |
|
| 39 |
```python
|
| 40 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 41 |
+
if not os.path.exists("whisper-vq-stoks-medium-en+pl-fixed.model"):
|
| 42 |
+
hf_hub_download(
|
| 43 |
+
repo_id="jan-hq/WhisperVQ",
|
| 44 |
+
filename="whisper-vq-stoks-medium-en+pl-fixed.model",
|
| 45 |
+
local_dir=".",
|
| 46 |
+
)
|
| 47 |
+
vq_model = RQBottleneckTransformer.load_model(
|
| 48 |
+
"whisper-vq-stoks-medium-en+pl-fixed.model"
|
| 49 |
+
).to(device)
|
| 50 |
+
def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device=device):
|
| 51 |
+
vq_model.ensure_whisper(device)
|
| 52 |
+
|
| 53 |
+
wav, sr = torchaudio.load(audio_path)
|
| 54 |
+
if sr != 16000:
|
| 55 |
+
wav = torchaudio.functional.resample(wav, sr, 16000)
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
codes = vq_model.encode_audio(wav.to(device))
|
| 58 |
+
codes = codes[0].cpu().tolist()
|
| 59 |
+
|
| 60 |
+
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
| 61 |
+
return f'<|sound_start|>{result}<|sound_end|>'
|
| 62 |
+
|
| 63 |
+
def audio_to_sound_tokens_transcript(audio_path, target_bandwidth=1.5, device=device):
|
| 64 |
+
vq_model.ensure_whisper(device)
|
| 65 |
+
|
| 66 |
+
wav, sr = torchaudio.load(audio_path)
|
| 67 |
+
if sr != 16000:
|
| 68 |
+
wav = torchaudio.functional.resample(wav, sr, 16000)
|
| 69 |
+
with torch.no_grad():
|
| 70 |
+
codes = vq_model.encode_audio(wav.to(device))
|
| 71 |
+
codes = codes[0].cpu().tolist()
|
| 72 |
+
|
| 73 |
+
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
| 74 |
+
return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'
|
| 75 |
```
|
| 76 |
|
| 77 |
Then, we can inference the model the same as any other LLM.
|
| 78 |
|
| 79 |
```python
|
| 80 |
+
def setup_pipeline(model_path, use_4bit=False, use_8bit=False):
|
| 81 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 82 |
+
|
| 83 |
+
model_kwargs = {"device_map": "auto"}
|
| 84 |
+
|
| 85 |
+
if use_4bit:
|
| 86 |
+
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
| 87 |
+
load_in_4bit=True,
|
| 88 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 89 |
+
bnb_4bit_use_double_quant=True,
|
| 90 |
+
bnb_4bit_quant_type="nf4",
|
| 91 |
+
)
|
| 92 |
+
elif use_8bit:
|
| 93 |
+
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
| 94 |
+
load_in_8bit=True,
|
| 95 |
+
bnb_8bit_compute_dtype=torch.bfloat16,
|
| 96 |
+
bnb_8bit_use_double_quant=True,
|
| 97 |
+
)
|
| 98 |
+
else:
|
| 99 |
+
model_kwargs["torch_dtype"] = torch.bfloat16
|
| 100 |
+
|
| 101 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
| 102 |
+
|
| 103 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 104 |
+
|
| 105 |
+
def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=False):
|
| 106 |
+
generation_args = {
|
| 107 |
+
"max_new_tokens": max_new_tokens,
|
| 108 |
+
"return_full_text": False,
|
| 109 |
+
"temperature": temperature,
|
| 110 |
+
"do_sample": do_sample,
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
output = pipe(messages, **generation_args)
|
| 114 |
+
return output[0]['generated_text']
|
| 115 |
+
|
| 116 |
+
# Usage
|
| 117 |
+
llm_path = "homebrewltd/llama3.1-s-instruct-v0.2"
|
| 118 |
+
pipe = setup_pipeline(llm_path, use_8bit=True)
|
| 119 |
```
|
| 120 |
|
| 121 |
## Training process
|