HugoHE commited on
Commit
6b46526
·
verified ·
1 Parent(s): 32af320

Add comprehensive model card for faster-rcnn-bdd-finetune

Browse files
Files changed (1) hide show
  1. README.md +137 -0
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: pytorch
4
+ tags:
5
+ - faster-rcnn
6
+ - object-detection
7
+ - computer-vision
8
+ - pytorch
9
+ - bdd100k
10
+ - autonomous-driving
11
+ - BDD 100K
12
+ - fine-tuned
13
+ - hallucination-mitigation
14
+ - out-of-distribution
15
+ pipeline_tag: object-detection
16
+ datasets:
17
+ - bdd100k
18
+ widget:
19
+ - src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bounding-boxes-sample.png
20
+ example_title: "Sample Image"
21
+ model-index:
22
+ - name: faster-rcnn-bdd-finetune
23
+ results:
24
+ - task:
25
+ type: object-detection
26
+ dataset:
27
+ type: bdd100k
28
+ name: Berkeley DeepDrive (BDD) 100K
29
+ metrics:
30
+ - type: mean_average_precision
31
+ name: mAP
32
+ value: "TBD"
33
+ ---
34
+
35
+ # Faster R-CNN - Berkeley DeepDrive (BDD) 100K Fine-tuned
36
+
37
+ Faster R-CNN model fine-tuned on Berkeley DeepDrive (BDD) 100K dataset to mitigate hallucination on out-of-distribution data in autonomous driving scenarios.
38
+
39
+ ## Model Details
40
+
41
+ - **Model Type**: Faster R-CNN Object Detection
42
+ - **Dataset**: Berkeley DeepDrive (BDD) 100K
43
+ - **Training Method**: fine-tuned to mitigate hallucination on out-of-distribution data
44
+ - **Framework**: PyTorch
45
+ - **Task**: Object Detection
46
+
47
+ ## Dataset Information
48
+
49
+ This model was trained on the **Berkeley DeepDrive (BDD) 100K** dataset, which contains the following object classes:
50
+
51
+ car, truck, bus, motorcycle, bicycle, person, traffic light, traffic sign, train, rider
52
+
53
+ ### Dataset-specific Details:
54
+
55
+ **Berkeley DeepDrive (BDD) 100K Dataset:**
56
+ - 100,000+ driving images with diverse weather and lighting conditions
57
+ - Designed for autonomous driving applications
58
+ - Contains urban driving scenarios from multiple cities
59
+ - Annotations include bounding boxes for vehicles, pedestrians, and traffic elements
60
+
61
+ ## Usage
62
+
63
+ This model can be used with PyTorch and common object detection frameworks:
64
+
65
+ ```python
66
+ import torch
67
+ import torchvision.transforms as transforms
68
+ from PIL import Image
69
+
70
+ # Load the model (example using torchvision)
71
+ model = torch.load('path/to/model.pth')
72
+ model.eval()
73
+
74
+ # Prepare your image
75
+ transform = transforms.Compose([
76
+ transforms.ToTensor(),
77
+ ])
78
+
79
+ image = Image.open('path/to/image.jpg')
80
+ image_tensor = transform(image).unsqueeze(0)
81
+
82
+ # Run inference
83
+ with torch.no_grad():
84
+ predictions = model(image_tensor)
85
+
86
+ # Process results
87
+ boxes = predictions[0]['boxes']
88
+ scores = predictions[0]['scores']
89
+ labels = predictions[0]['labels']
90
+ ```
91
+
92
+ ## Model Performance
93
+
94
+ This model was fine-tuned to mitigate hallucination on out-of-distribution data on the Berkeley DeepDrive (BDD) 100K dataset using Faster R-CNN architecture.
95
+
96
+ **Fine-tuning Objective**: This model was specifically fine-tuned to mitigate hallucination on out-of-distribution (OOD) data, improving robustness when encountering images that differ from the training distribution.
97
+
98
+ ## Architecture
99
+
100
+ **Faster R-CNN** (Region-based Convolutional Neural Network) is a two-stage object detection framework:
101
+
102
+ 1. **Region Proposal Network (RPN)**: Generates object proposals
103
+ 2. **Fast R-CNN detector**: Classifies proposals and refines bounding box coordinates
104
+
105
+ Key advantages:
106
+ - High accuracy object detection
107
+ - Precise localization
108
+ - Good performance on small objects
109
+ - Well-established architecture with extensive research backing
110
+
111
+ ## Intended Use
112
+
113
+ - **Primary Use**: Object detection in autonomous driving scenarios
114
+ - **Suitable for**: Research, development, and deployment of object detection systems
115
+ - **Limitations**: Performance may vary on images significantly different from the training distribution
116
+
117
+ ## Citation
118
+
119
+ If you use this model, please cite:
120
+
121
+ ```bibtex
122
+ @article{ren2015faster,
123
+ title={Faster r-cnn: Towards real-time object detection with region proposal networks},
124
+ author={Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian},
125
+ journal={Advances in neural information processing systems},
126
+ volume={28},
127
+ year={2015}
128
+ }
129
+ ```
130
+
131
+ ## License
132
+
133
+ This model is released under the MIT License.
134
+
135
+ ## Keywords
136
+
137
+ Faster R-CNN, Object Detection, Computer Vision, BDD 100K, Autonomous Driving, Deep Learning, Two-Stage Detection