Update README.md
Browse files
README.md
CHANGED
|
@@ -7,67 +7,129 @@ language:
|
|
| 7 |
pipeline_tag: text-generation
|
| 8 |
---
|
| 9 |
|
| 10 |
-
Quick start:
|
| 11 |
-
|
| 12 |
-
```shell
|
| 13 |
-
from transformers import AutoModelForCausalLM
|
| 14 |
-
from transformers import AutoTokenizer
|
| 15 |
-
import torch
|
| 16 |
-
import pdb
|
| 17 |
-
|
| 18 |
-
dir = "FreedomIntelligence/ALLaVA-3B-Longer"
|
| 19 |
-
|
| 20 |
-
device = 'cuda'
|
| 21 |
-
model = AutoModelForCausalLM.from_pretrained(dir, trust_remote_code=True, device_map=device, torch_dtype=torch.bfloat16)
|
| 22 |
-
tokenizer = AutoTokenizer.from_pretrained(dir)
|
| 23 |
-
model.tokenizer = tokenizer
|
| 24 |
-
|
| 25 |
-
gen_kwargs = {
|
| 26 |
-
'min_new_tokens': 20,
|
| 27 |
-
'max_new_tokens': 100,
|
| 28 |
-
'do_sample': False,
|
| 29 |
-
'eos_token_id': tokenizer.eos_token_id # this is a must since transformers ~4.37
|
| 30 |
-
}
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
|
|
|
|
|
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
```
|
|
|
|
| 7 |
pipeline_tag: text-generation
|
| 8 |
---
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# ALLaVA: Harnessing GPT4V-synthesized Data for A Lite Vision-Language Model
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
<p align="center">
|
| 16 |
+
β‘ALLaVA is a project that provides a large-scale GPT4V-synthesized dataset for training LVLMs.β‘
|
| 17 |
+
</p>
|
| 18 |
+
|
| 19 |
+
<!-- <p align="center">
|
| 20 |
+
|
| 21 |
+
  
|
| 22 |
+
</p> -->
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
<p align="center">
|
| 27 |
+
π <a href="https://arxiv.org/abs/2402.11684" target="_blank">Paper</a> β’ π <a href="https://allava.freedomai.cn/#/" target="_blank">Demo</a> β’ π¨π»βπ» <a href="https://github.com/FreedomIntelligence/ALLaVA" target="_blank">Github</a>
|
| 28 |
+
</p>
|
| 29 |
+
<p align="center">
|
| 30 |
+
π€ <a href="https://huggingface.co/datasets/FreedomIntelligence/ALLaVA-4V" target="_blank">ALLaVA-4V Dataset</a>
|
| 31 |
+
</p>
|
| 32 |
+
|
| 33 |
+
<p align="center">
|
| 34 |
+
π€ <a href="https://huggingface.co/FreedomIntelligence/ALLaVA-3B-Longer" target="_blank">ALLaVA-3B-Longer</a> β’ π€ <a href="https://huggingface.co/FreedomIntelligence/ALLaVA-3B" target="_blank">ALLaVA-3B</a>
|
| 35 |
+
</p>
|
| 36 |
+
|
| 37 |
+
<!-- <p align="center">
|
| 38 |
+
π <a href="https://arxiv.org/abs/2402.11684" target="_blank">Paper</a> β’ π <a href="https://allava.freedomai.cn/#/" target="_blank">Demo</a> β’ π€ <a href="https://huggingface.co/datasets/FreedomIntelligence/ALLaVA-4V" target="_blank">ALLaVA-4V Dataset</a> β’ π€ <a href="https://huggingface.co/FreedomIntelligence/ALLaVA-3B-Longer" target="_blank">ALLaVA-3B-Longer</a> β’ π€ <a href="https://huggingface.co/FreedomIntelligence/ALLaVA-3B" target="_blank">ALLaVA-3B</a>
|
| 39 |
+
<br> <a href="https://github.com/FreedomIntelligence/CMB/blob/main/README_zh.md"> δΈζ</a> | <a href="https://github.com/FreedomIntelligence/CMB/blob/main/README.md"> English
|
| 40 |
+
</p> -->
|
| 41 |
+
|
| 42 |
+
## Benchmark Result
|
| 43 |
+
|
| 44 |
+
Our model [**ALLaVA-3B-Longer**](https://huggingface.co/FreedomIntelligence/ALLaVA-3B-Longer) and [**ALLaVA-3B**](https://huggingface.co/FreedomIntelligence/ALLaVA-3B) achieve competitive results on 12 benchmarks. Bold numbers denote the SOTA performance among 3B-scale models.
|
| 45 |
+
|
| 46 |
+
| Model | Backbone | Vicuna-80 | MMB | SEEDBench-v1 (img) | MM-Vet | MMMU (val) | MME | TextVQA | GQA | EMT (CIFAR10) | MLLM-Bench | TouchStone | LLaVA (In-the-Wild) |
|
| 47 |
+
|-------|----------|-----------|-----|-------------|--------|----------|-----|------|-----|---------|----|----|--------|
|
| 48 |
+
| Qwen-VL-Chat | Qwen-7B | - | 60.6 | 65.4 | - | 35.9 | 1487.5 | 61.5 | 57.5 | - | 6.2 | 711.6 | - |
|
| 49 |
+
| LLaVA-v1.5-7B | Vicuna-7B | - | 64.3 | - | 31.1 | - | 1510.7 | 58.2 | 62.0 | - | - | | 65.4 |
|
| 50 |
+
| LLaVA-v1.5-13B | Vicuna-13B | 22.50 | 67.7 | 68.2 | 35.4 | 36.4 | 1531.3 | 61.3 | 63.3 | 85.0 | 7.4 | 637.7 | 70.7 |
|
| 51 |
+
| ShareGPT4V-7B | Vicuna-7B | - | 68.8 | 69.7 | 37.6 | - | 1943.8 | 60.4 | 63.3 | - | - | - | 72.6 |
|
| 52 |
+
| TinyGPT-V | Phi2-2.7B | - | - | - | - | - | - | - | 33.6 | - | - | - | - |
|
| 53 |
+
| MobileVLM | MobileLLaMA-2.7B | - | 59.6 | - | - | - | 1288.9 | 47.5 | - | - | - | - | - |
|
| 54 |
+
| LLaVA-Phi | Phi2-2.7B | - | 59.8 | - | 28.9 | - | 1335.1 | 48.6 | - | - | - | - | - |
|
| 55 |
+
| **ALLaVA-3B** | Phi2-2.7B | 48.8 | 64.0 | 65.2 | 32.2 | **35.3** | **1623.2** | 49.5 | 48.8 | **90.2** | 6.7 | 632.0 | 69.4 |
|
| 56 |
+
| **ALLaVA-3B-Longer** | Phi2-2.7B | **52.5** | **64.6** | **65.6** | **35.5** | 33.2 | 1564.6 | **50.3** | **50.0** | 85.9 | **8.8** | **636.5** | **71.7** |
|
| 57 |
+
|
| 58 |
+
The detailed information of each benchmark is shown in Table 4 of our [technical report](https://arxiv.org/pdf/2402.11684.pdf).
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
## π Inference
|
| 63 |
+
|
| 64 |
+
### Load from π€ (Recommended)
|
| 65 |
+
See the [example script](https://github.com/FreedomIntelligence/ALLaVA/blob/main/allava/serve/huggingface_inference.py).
|
| 66 |
+
|
| 67 |
+
### CLI
|
| 68 |
+
See [here](https://github.com/FreedomIntelligence/ALLaVA/tree/main?tab=readme-ov-file#cli) for CLI code snippet.
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
## ποΈββοΈ Training
|
| 73 |
+
|
| 74 |
+
### Data
|
| 75 |
+
<div align=center>
|
| 76 |
+
<img src="training_datasets_by_stage.jpg" width = "640" alt="training_datasets" align=center />
|
| 77 |
+
</div>
|
| 78 |
|
| 79 |
+
As shown in the table, ALLaVA-3B uses 1M and 1.5M data for PT. and FT., respectively.
|
| 80 |
+
ALLaVA-3B-Longer trains one more epoch (i.e. 3M in total) for the FT. stage.
|
| 81 |
|
| 82 |
+
### Code
|
| 83 |
+
The training code is largely based on [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA).
|
| 84 |
+
We wholeheartedly express our gratitude for their invaluable contributions to open-sourcing LVLMs.
|
| 85 |
+
|
| 86 |
+
### Cost
|
| 87 |
+
We train our models on 8*A800 GPUs.
|
| 88 |
+
[ALLaVA-3B-Longer](https://huggingface.co/FreedomIntelligence/ALLaVA-3B-Longer) takes 8.3h for PT and 21.3h for FT.
|
| 89 |
+
[ALLaVA-3B](https://huggingface.co/FreedomIntelligence/ALLaVA-3B) takes 8.3h for PT and 10.6h for FT.
|
| 90 |
+
These two models share the same PT procedure.
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
### Hyperparameters
|
| 94 |
+
|
| 95 |
+
| Global Batch Size| ZeRO Stage| Optimizer | Max LR| Min LR | Scheduler | Max length | Weight decay |
|
| 96 |
+
| ---: | ---: |--:| ---: | ---: | ---: | ---: | ---: |
|
| 97 |
+
| 256 (PT) / 128 (FT) | 1| AdamW | 2e-5 | 2e-6 | CosineAnnealingWarmRestarts | 2048 | 0 |
|
| 98 |
+
|
| 99 |
+
The LM backbone, projector are trainable, while the vision encoder is kept frozen.
|
| 100 |
+
**The trainabilities of each module are the same for both stages.**
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
## π ALLaVA-4V Data
|
| 104 |
+
|
| 105 |
+
The majority part of training data is [ALLaVA-4V](https://huggingface.co/datasets/FreedomIntelligence/ALLaVA-4V). See [here](https://github.com/FreedomIntelligence/ALLaVA/tree/main?tab=readme-ov-file#data-preparation) to prepare it for training.
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
## π Contributors
|
| 109 |
+
|
| 110 |
+
- Project Leader: [Guiming Hardy Chen](https://g-h-chen.github.io/)
|
| 111 |
+
|
| 112 |
+
- Data: Shunian Chen, [Junying Chen](https://jymchen.github.io/), Xiangbo Wu
|
| 113 |
+
|
| 114 |
+
- Evaluation: [Ruifei Zhang](https://scholar.google.com/citations?user=W4zOhmEAAAAJ&hl=zh-CN)
|
| 115 |
+
|
| 116 |
+
- Deployment: Xiangbo Wu, Zhiyi Zhang
|
| 117 |
+
|
| 118 |
+
- Advising: [Zhihong Chen](https://zhjohnchan.github.io/), [Benyou Wang](https://wabyking.github.io/old.html)
|
| 119 |
+
|
| 120 |
+
- Others: Jianquan Li, [Xiang Wan](https://scholar.google.com/citations?user=e3_kWigAAAAJ&hl=zh-CN)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
## π Citation
|
| 127 |
+
If you find our data useful, please consider citing our work! We are FreedomIntelligence from [Shenzhen Research Institute of Big Data](http://sribd.cn/en) and [The Chinese University of Hong Kong, Shenzhen](https://sds.cuhk.edu.cn/en)
|
| 128 |
+
```
|
| 129 |
+
@article{chen2024allava,
|
| 130 |
+
title={ALLaVA: Harnessing GPT4V-synthesized Data for A Lite Vision-Language Model},
|
| 131 |
+
author={Chen, Guiming Hardy and Chen, Shunian and Zhang, Ruifei and Chen, Junying and Wu, Xiangbo and Zhang, Zhiyi and Chen, Zhihong and Li, Jianquan and Wan, Xiang and Wang, Benyou},
|
| 132 |
+
journal={arXiv preprint arXiv:2402.11684},
|
| 133 |
+
year={2024}
|
| 134 |
+
}
|
| 135 |
```
|