--- language: - en license: llama2 tags: - code - llama2 - full-fine-tuning - mask-fine-tuning - coding datasets: - tulu3_persona_python - evol_code - code_alpaca base_model: meta-llama/Llama-2-7b-hf --- # llama2-7b-coding-fft This model is a **Full Fine-Tuned (FFT)** version of LLaMA2-7B on coding datasets, trained as part of replicating the [Mask Fine-Tuning (MFT) paper](https://arxiv.org/abs/2503.22764v1). ## Model Details - **Base Model:** meta-llama/Llama-2-7b-hf - **Training Type:** Full Fine-Tuning (FFT) - **Domain:** Coding - **Hardware:** TPU v4-8 - **Training Framework:** PyTorch + torch_xla ## Training Data The model was trained on 30,000 samples from three coding datasets (matching the paper): - **Tulu 3 Persona Python:** 10,000 samples - **Evol CodeAlpaca:** 10,000 samples - **Code-Alpaca:** 10,000 samples ## Training Configuration - **Epochs:** 2 - **Sequence Length:** 4096 - **Learning Rate:** 2e-5 - **Batch Size:** 8 (effective) - **Optimizer:** AdamW - **LR Scheduler:** Linear with warmup - **Mixed Precision:** bfloat16 ## Training Results - **Final Loss:** 0.15353151041666666 - **Final Perplexity:** 1.1673020833333334 - **Training Time:** ~7 hours on TPU v4-8 - **Total Steps:** 7500 ### Loss Progression - Epoch 0: 0.42591484375 - Epoch 1: 0.15353151041666666 ## Intended Use This model serves as the **FFT baseline** for the Mask Fine-Tuning paper replication. It will be evaluated on: - **HumanEval** (code generation benchmark) - Target: Match paper's FFT baseline of 29.3% ## Evaluation Evaluation on HumanEval is pending. Results will be updated here once available. ## Citation If you use this model, please cite the original MFT paper: ```bibtex @article{mft2025, title={Mask Fine-Tuning}, author={[Authors from paper]}, journal={arXiv preprint arXiv:2503.22764v1}, year={2025} } ``` ## Reproducibility Training configuration and code available at: [GitHub Repository](https://github.com/chrisfrancisque/mft-tpu) ## License This model inherits the LLaMA 2 Community License from the base model.