output
This model is a fine-tuned version of kisti/korscideberta on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1835
- Accuracy: 0.9280
- Precision: 0.9280
- Recall: 0.9280
- F1: 0.9279
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.4034 | 0.3188 | 500 | 0.3371 | 0.8543 | 0.8737 | 0.8543 | 0.8538 |
| 0.2338 | 0.6376 | 1000 | 0.1964 | 0.9159 | 0.9159 | 0.9159 | 0.9159 |
| 0.2079 | 0.9563 | 1500 | 0.1719 | 0.9322 | 0.9323 | 0.9322 | 0.9323 |
Framework versions
- Transformers 4.45.0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.20.3
- Downloads last month
- 11
Model tree for 1yuuuna/output
Base model
kisti/korscideberta